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Estimating Models of Supply and Demand:  
Instruments and Covariance Restrictions†

By Alexander MacKay and Nathan H. Miller*

We consider the identification of empirical models of supply and 
demand with imperfect competition. We show that a restriction on 
the covariance between unobserved demand and cost shocks can 
resolve endogeneity and identify the price parameter. We demon-
strate how to employ this approach in estimation, and we com-
pare it to the method of instrumental variables. Our formal results 
also indicate that weaker covariance restrictions can bound the 
price parameter. We illustrate the covariance restriction approach 
with applications to ready-to-eat cereal, cement, and airlines.  
(JEL C51, D12, L13, L61, L66, L93)

A fundamental challenge in identifying models of supply and demand is that 
firms can adjust markups in response to demand shocks. Even if marginal costs 

are constant, this source of price endogeneity generates upward-sloping supply in 
settings with imperfect competition. Thus, the empirical relationship between prices 
and quantities represents not a demand curve but rather a mixture of demand and 
supply. Researchers typically address this challenge by using supply-side instru-
ments to estimate demand and then using the supply model to recover marginal costs 
and simulate counterfactuals (e.g., Berry, Levinsohn, and Pakes 1995; Nevo 2001).

In this paper, we develop an alternative identification strategy that exploits cova-
riance restrictions between demand-side and supply-side structural error terms. We 
first establish a function linking the price parameter and the covariance of unobserv-
able cost and demand shocks for a broad class of oligopoly models. We then show 
how this relationship can identify the price parameter and pin down the slope of 
demand in estimation. A key distinction between our approach and the use of instru-
mental variables is that we interpret endogenous variation in prices and quantities 
through the lens of the model, rather than relying on an additional (observed) vari-
able to isolate exogenous variation in price. The core intuition is that the supply side 

* MacKay: Department of Economics, University of Virginia (email: mackay@virginia.edu); Miller: 
McDonough School of Business, Georgetown University (email: nathan.miller@georgetown.edu). Leeat Yariv was 
coeditor for this article. We thank Chris Adams, Steven Berry, Renata Gaineddenova, Charlie Murry, Matt Osborne, 
Chuck Romeo, Gloria Sheu, Karl Schurter, Jesse Shapiro, Michael Sullivan, Jeff Thurk, Andrew Sweeting, Matthew 
Weinberg, and Nathan Wilson for helpful comments. We also thank seminar and conference participants at Harvard 
University, MIT, the University of Maryland, the Barcelona GSE Summer Forum, and the NBER Summer Institute. 
Previous versions of this paper were circulated with the title “Instrument-Free Demand Estimation.” Replication 
files are available from the AEA Data and Code Repository (MacKay and Miller 2025).

† Go to https://doi.org/10.1257/mic.20230024 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.

https://doi.org/10.1257/mic.20230024
mailto:mackay@virginia.edu
mailto:nathan.miller@georgetown.edu
https://doi.org/10.1257/mic.20230024


VOL. 17 NO. 1� 239MACKAY AND MILLER: ESTIMATING MODELS OF SUPPLY AND DEMAND

of the model dictates how prices respond to demand shocks, shaping the relative 
variation of quantities and prices in the data. We explore the promise and limitations 
of the covariance restriction approach to estimation, both theoretically and in the 
context of three empirical applications that we draw from the literature.

In Section I, we outline the data-generating process for our baseline model and 
provide formal identification results. The model can accommodate standard empir-
ical demand systems, such as logit and random coefficients logit, among others. 
The supply-side assumptions nest different models of conduct for oligopolists with 
constant marginal costs, including differentiated-products Bertrand competition and 
Cournot competition. In this setting, prices are endogenous because they respond to 
a demand shock (the demand-side “structural error term”) that is unobserved to the 
econometrician.

We prove that the price parameter solves a quadratic equation in which the coef-
ficients are functions of observables and the covariance between demand and cost 
shocks. With a restriction on the covariance term, the price parameter is identified 
up to (at most) two points. Under reasonable conditions, the price parameter is the 
more negative solution, and point identification is obtained. The price parameter can 
be computed directly from an analytical solution, or the covariance restriction can 
be recast as an orthogonality condition and estimation can proceed with the method 
of moments. We show how the empirical variation in (transformed) quantities and 
prices is informative about the price parameter. All else equal, more elastic demand 
yields greater variation in quantities relative to variation in prices.1

Point identification can thus be achieved with a fully specified model and a covari-
ance restriction on unobserved shocks. Whether the covariance restriction is credible 
depends on the details of the economic environment. For example, in the presence 
of capacity constraints, a positive demand shock can increase marginal costs, yield-
ing an overall positive correlation. Using weaker assumptions, we show how our 
results can be used to achieve partial identification and bound the price parameter. 
If the econometrician can sign the correlation between unobserved demand and cost 
shocks, then one-sided bounds can be placed on the price parameter. Furthermore, 
our results show when it is possible to rule out some values of the price parameter 
without any assumption about this correlation.

In Section II, we compare the assumptions under which the covariance restriction 
approach obtains point identification to the corresponding assumptions of the instru-
mental variable approach. Both approaches employ restrictions on the correlation 
structure of unobservables. As typically defined, valid instruments satisfy an exclu-
sion condition and a relevance condition. The exclusion restriction for instrumental 
variables is similar to the covariance restriction when the econometrician uses cost 
variation as an instrument. However, the instrumental variable approach requires 
the econometrician to observe exogenous variation in order to identify the model 
(e.g., Wooldridge 2010; Berry and Haile 2014). The covariance restriction approach 
avoids this requirement by imposing the stronger assumption that the residual unob-
served variation is uncorrelated. This assumption also precludes the need for an 

1 This is true even if the empirical relationship between prices and quantities is upward sloping. Our method will 
still recover the correct downward-sloping demand curve.
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empirical relevance condition; all of the observed variation in prices and quantities 
is used in estimation. By contrast, the instrumental variable approach can suffer 
from bias if the instrument and price are weakly correlated.

After formalizing these distinctions, we compare our identification strategy to an 
approach that uses “residual instruments” recovered under a covariance restriction 
(Hausman and Taylor 1983) and to the oft-used instruments of Hausman (1996). 
Finally, we use Monte Carlo simulations to show that, when the necessary assump-
tions are met, a covariance restriction outperforms instruments in finite samples, 
especially when instruments become weak.

In Section III, we provide extensions to the baseline model. First, we consider a 
more general class of covariance restrictions that might be employed in practice. For 
example, for the Hausman instruments—prices in related markets—to be valid, three 
economic assumptions about the correlation structure between unobserved shocks 
must be satisfied. We discuss how one could employ these assumptions directly in 
a method of moments estimator rather than rely on an instrumental variables imple-
mentation using observed prices.

We also discuss models in which costs are not constant in quantity. In such cases, 
the response of prices to demand shocks is mediated by the slope of the cost curve. 
One approach to resolve this issue is to explicitly model the (nonconstant) marginal 
cost function. A covariance restriction may then be credible, though identification 
requires additional moments for any parameters that enter the nonconstant portion 
of marginal costs. Alternatively, one could forgo the estimation of the marginal cost 
function and, instead, invoke the bounds approach.

We apply these methods in a series of empirical applications (Section IV). The three 
settings that we have selected—ready-to-eat (RTE) cereals, cement, and airlines—dif-
fer in a variety of ways that influence our implementation. With RTE cereals, marginal 
costs can plausibly be modeled as constant, so we proceed with estimation under a 
covariance restriction, using fixed effects to absorb potentially confounding variation. 
With cement, capacity constraints imply that marginal costs may increase with quanti-
ties. We follow an approach developed in the literature and model this effect explicitly, 
after which we view a covariance restriction as credible. Finally, with airlines, we 
apply a bounds approach that uses weaker assumptions about the relationship between 
demand and cost shocks, as the stronger assumptions used in the two preceding appli-
cations may not be credible for that industry. In each case, we show how covariance 
restrictions support inferences about the price parameter.

Together, these results show how covariance restrictions can help overcome a sig-
nificant obstacle for empirical research: the need to find valid instruments for price. 
In our three applications, we obtain parameter values that are consistent with instru-
mental variable estimates. Outside of this paper, Döpper et al. (forthcoming) show 
that covariance restrictions deliver estimates comparable to those in the industrial 
organization literature (for cereal, yogurt, and beer) as well as in the international 
trade literature (coffee). De los Santos, O’Brien, and Wildenbeest (2024) use cova-
riance restrictions in the context of e-books. Like other electronic goods, e-books 
can have substantial fluctuations in demand over time that are unrelated to changes 
in marginal costs. These examples indicate that covariance restrictions can deliver 
reasonable estimates in different settings.
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Empirical models of imperfect competition typically have other key parameters 
that characterize heterogeneity of consumer preferences. To identify these parame-
ters, researchers have used micro-moments constructed from the observed behavior 
of individual consumers (e.g., Backus, Conlon, and Sinkinson 2021; Döpper et al. 
forthcoming) and “second-choice” data from surveys about consumers’ ordered 
preferences over products (e.g., Grieco, Murry, and Yurukoglu 2023). These strate-
gies identify the consumer heterogeneity parameters but do not resolve price endog-
eneity (Berry and Haile 2024). Thus, the covariance restriction approach that we 
examine is a useful complement to the use of detailed consumer data.2

To put our results in context, covariance restrictions were analyzed in early 
research on the identification of linear systems of equations, including supply 
and demand models of perfect competition (e.g., Koopmans 1949; Koopmans, 
Rubin, and Leipnik 1950).3 With perfect competition, the supply curve is upward 
sloping due to increasing costs of production. With upward-sloping supply and 
downward-sloping demand, two separate restrictions are required for identification 
(Hausman and Taylor 1983). If, instead, price endogeneity arises due to the markup 
adjustments that occur in models of imperfect competition, then (as we show) a 
single restriction is sufficient for identification.

The strategy of using supply-side restrictions to reduce identification require-
ments has parallels in a handful of other articles. Leamer (1981) examines a linear 
model of perfect competition and provides conditions under which the price param-
eters can be bounded using only the endogenous variation in prices and quantities. 
Feenstra (1994) considers the case of monopolistic competition with constant mark-
ups, and a number of applications in the trade literature extend this constant-markup 
approach (e.g., Broda and  Weinstein 2006, 2010; Soderbery 2015).4 Zoutman, 
Gavrilova, and Hopland (2018) return to perfect competition and show that under 
a standard assumption in models of taxation, both supply and demand can be esti-
mated with exogenous variation in a single tax rate. At a high level, our approach 
to estimation with covariance restrictions relates to Petterson, Seim, and Shapiro 
(2023), who show how to bound structural parameters based on beliefs about the 
magnitudes of unobserved shocks. Our research complements these articles by 
developing results for imperfect competition with adjustable markups.5

2 Alternatively, if instruments are constructed from the characteristics of competing products (e.g., Berry, 
Levinsohn, and Pakes 1995; Gandhi and Houde 2023), then the covariance restriction could be incorporated using 
the generalized method of moments (GMM) as an additional identifying restriction.

3 Many articles advanced this research agenda, which began at the Cowles Foundation, in subsequent decades 
(e.g., Fisher 1963, 1965; Wegge 1965; Rothenberg 1971; Hausman and Taylor 1983; Hausman, Newey, and Taylor 
1987). More recently, Matzkin (2016) examines covariance restrictions in semiparametric models.

4 There are interesting historical antecedents to this trade literature. Leamer (1981) attributes an early version 
of his results to Schultz (1928). The identification argument of Feenstra (1994) is also proposed in Leontief (1929). 
Frisch (1933) provides an important econometric critique.

5 Some applications in industrial organization identify demand-side parameters with the assistance of supply-side 
assumptions (e.g., Thomadsen 2005; Cho et al. 2018; Li et al. 2022). Among these, Thomadsen (2005) assumes that 
there are not unobserved demand shocks, and Cho et al. (2018) assume that there are no unobserved cost shocks; 
both are special cases of the covariance restriction approach.
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I.  Model and Identification

A.  Data-Generating Process

The model examines supply and demand across markets. Markets can be concep-
tualized as (for example) separate locations, time periods, or both. In each market  
​t​, there is a set ​​​t​​  = ​ {0, 1,  … , ​J​t​​}​​ of products available for purchase. The market ​
t  =  1,  … , T​ is defined by (​​​t​​, ​χ​t​​​), where

	​​ χ​t​​  = ​ {​x​t​​, ​w​t​​, ​ξ​t​​, ​η​t​​}​​

contains product and market characteristics. Among these, ​​x​t​​  = ​ [​x​1t​​;  … ; ​x​​J​t​​t​​]​​ is 
a ​​J​t​​ × K​ matrix of (nonprice, exogeneous) product-market characteristics that are 
observable to the econometrician, ​​w​t​​​ contains observable variables that arise in 
some specifications of the model, and ​​ξ​t​​  = ​ (​ξ​1t​​,  … , ​ξ​​J​t​​t​​)​​ and ​​η​t​​  = ​ (​η​1t​​,  … , ​η​​J​t​​t​​)​​ 
are mean-zero ​​J​t​​ × 1​ vectors of unobservable product-level or market-level charac-
teristics. We sometimes refer to the unobservable characteristics as “structural error 
terms.” Let each ​​ξ​jt​​, ​η​jt​​  ∈  ℝ​ and each ​​x​jt​​​​  ∈ ​ ℝ​​ K​​ be a ​K × 1​ (row) vector. We assume 
that the first element in each ​​x​jt​​​ equals one—i.e., that the characteristics in ​​x​t​​​ include 
a constant. The dimension of ​​w​t​​​ depends on the modeling specification. Without loss 
of generality, let ​​​t​​  =    = ​ {0, 1,  … , J}​​.

Prices and quantities are determined endogenously by market participants. Let ​​
p​t​​  = ​ (​p​1t​​,  … , ​p​Jt​​)​​ be a vector of prices and ​​q​t​​  = ​ (​q​1t​​,  … , ​q​Jt​​)​​ be a vector of 
quantities, with ​​p​jt​​, ​q​jt​​  ∈  ℝ​. Both prices and quantities are observable to the econo-
metrician. The parameters of the model are in the set ​θ  = ​ {​θ​1​​, ​θ​2​​}​​. Following Nevo 
(2001), we let ​​θ​1​​​ include parameters that affect demand and supply linearly in a 
manner that we specify below, whereas we use ​​θ​2​​​ for additional parameters that 
enter with some specifications of the model. An example of the latter is the nesting 
parameter that enters if demand is nested logit (e.g., Berry 1994). Our main identi-
fication results are for ​​θ​1​​​. Covariance restrictions also can help pin down ​​θ​2​​​ in some 
settings.

On the demand side, we assume that the quantity of each product is determined 
by ​​q​jt​​  = ​ σ​​ ​(j,t)​​​(​p​t​​, ​χ​t​​; θ)​​, where each ​​σ​​ ​(j,t)​​​ is a demand function. We also assume 
that, for every ​​(j, t)​​, there exists a known function ​​h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​ that is increasing 
in the quantity of the product (​​q​jt​​​). The function can be interpreted as providing 
transformed quantities as a function of ​​w​t​​​ and ​​θ​2​​​. We provide examples of ​​h​​ ​(j,t)​​​ later, 
as its form depends on the demand system. The substantive restriction we place 
on demand is that ​​h​​ ​(j,t)​​​ is constructed such that the following equality is satisfied 
everywhere:

(1)	​​ h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  =  α ​p​jt​​ + ​x​jt​​ β + ​ξ​jt​​​,

where ​α​ and ​β​ are parameters contained in ​​θ​1​​​ and ​α  <  0​ (i.e., demand slopes 
down). Thus, we assume that a known function can map quantities to an index that 
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is linear in prices. Models that satisfy these conditions are used regularly in the 
empirical industrial organization literature.6

Equation (1) embeds two important assumptions. First is that the unknowns  
​​θ​1​​​, ​​ξ​t​​​, and ​​η​t​​​ do not enter ​​h​​ ​(j,t)​​​ directly (but can enter indirectly through ​​q​t​​​). Thus, ​​
h​​ ​(j,t)​​​ can be constructed given observables and knowledge of ​​θ​2​​​. Second is that the 
right-hand side of equation (1) is linear. This restriction allows us to use linear regres-
sion results to construct an analytic expression for ​α​. Though separability of ​​ξ​jt​​​ and ​​
p​jt​​​ is important, it is not critical that the expression be linear in prices, as we show in 
Appendix A.

On the supply side, we decompose prices into markups and marginal costs:

(2)	​​ p​jt​​  =  ​μ​jt​​ + m​c​jt​​​.

Consistent with equilibrium behavior in a broad class of oligopoly models, we 
assume that for each ​​(j, t)​​, there exists a known function ​​λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​ such that 
the following equation holds:

(3)	​​ μ​jt​​  =  − ​ 1 _ α ​ ​λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​.

The substantive restrictions imposed are the multiplicative separability of ​1/α​ and 
that the unknowns ​​θ​1​​​, ​​ξ​t​​​, and ​​η​t​​​ do not enter ​​λ​​ ​(j,t)​​​ directly (but, as with demand, they 
can enter indirectly through ​​q​t​​​). Therefore, ​​λ​​ ​(j,t)​​​ can be constructed given observ-
ables and knowledge of ​​θ​2​​​. In our applications and in Appendix A, we show how to 
construct ​​λ​​ ​(j,t)​​​( · )​​ in a variety of specific contexts.7

To fix ideas, consider the canonical model of logit demand with oligopoly price 
competition. Quantities are given by ​​q​jt​​  = ​ s​jt​​ ​M​t​​​, where ​​s​jt​​​ is the market share of the 
product and ​​M​t​​​ (contained in ​​w​t​​​) is the size of market ​t​. The left-hand side of equation 
(1) is constructed as ​​h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  ≡  ln​(​s​jt​​)​ − ln​(​s​0t​​)​​, where ​​s​0​​  =  1 − ​∑ k∈​ 

 
 ​​​  s​kt​​​ 

is the market share of the “outside good.” With logit demand, there are no parameters 
in ​​θ​2​​​, and market size is the only variable in ​​w​t​​​. The ​​h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​ function provides 
the utility that the average consumer would obtain from the product. Likewise, on the 
supply side, ​​λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​ provides the markups measured in utils, while dividing 
by ​− α​ obtains markups measured in units of currency. With single-product firms, the 
logit markup is given by ​​μ​jt​​  =  − ​ 1 _ α ​ ​  1 _ 1 − ​s​jt​​

 ​​, and thus ​​λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  =  1/​(1 − ​s​jt​​)​​.
We initially maintain that marginal costs are constant and linear in the product 

characteristics:

(4)	​ m​c​jt​​  = ​ x​jt​​ γ + ​η​jt​​​,

6 See the discussion of logit demand in the paragraph following equation (3). Nested logit, random coefficients 
logit, linear demand, and constant elasticity demand are nested within the general model or accommodated with 
straightforward generalizations (Appendix A).

7 For example, with single-product Bertrand pricing and differentiable demand, we have the general expression ​​

μ​jt​​  =  − ​  1 _ 
d ​q​jt​​ / d ​p​jt​​

 ​ ​q​jt​​  =  − ​ 1 _ α ​ ​ d ​h​​ ​(j,t)​​ _ 
d ​q​jt​​

  ​ ​q​jt​​​, yielding ​​λ​​ ​(j,t)​​  =  ​ d ​h​​ ​(j,t)​​ _ 
d ​q​jt​​

  ​ ​q​jt​​​. Appendix A provides the relevant forms for specific 

demand systems, addresses the construction of ​​λ​​ ​(j,t)​​​ with multiproduct firms, and covers a generalized model of 
oligopoly that nests both Bertrand competition in prices and Cournot competition in quantities.
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where ​γ​ is contained in ​​θ​1​​​. We later allow marginal costs to depend on quantities 
(Section IIIB).

Combining equations (2)–(4), the supply side of the model implies that the fol-
lowing equation is satisfied for each product ​j​ and market ​t​:

(5)	​​ λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  =  − α ​p​jt​​ + α​x​jt​​ γ + α​η​jt​​​

This supply relationship characterizes how prices and quantities respond to shifts in 
demand (holding fixed ​α​ and marginal costs) given the behavior of firms. It can, for 
example, capture optimal price-setting behavior when individual firms have mar-
ket power, and unlike the supply curve for perfectly competitive firms, the supply 
relationship can lie above the marginal cost curve when plotted in price-quantity 
space.8 Because the supply relationship expresses (transformed) quantities as a lin-
ear function of prices and characteristics, it is the analog to the demand relationship 
of equation (1).

Together, equations (1) and (5) provide the conditions that jointly determine 
prices and quantities. The supply-side behavior captured by equation (5) does not 
necessarily have to correspond to equilibrium behavior, but, when it does, these 
equations yield equilibrium outcomes. The framework covers many of the empir-
ical models of industrial organization (Appendix A). Nonetheless, some models 
are excluded. For example, in models with constant elasticity demand, one cannot 
construct ​​h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​ that satisfies equation (1). It is possible, however, to find 
a function that satisfies a related restriction: that the right-hand side is linear in log 
prices, and log prices are additively separable from the demand-side structural error 
term. We discuss how to extend our results to this and other cases in Appendix A.

Equations (1) and (5) also illuminate potential strategies to identify ​​θ​1​​​. If a char-
acteristic ​​x​​ k​​ shifts marginal costs (​​γ​​ k​  ≠  0​) but is excluded from demand (​​β​​ k​  =  0​), 
then it is a valid instrument and can be used to estimate equation (1). A variable not 
in ​x​ that is correlated with ​η​ but not ​ξ​ could also be a valid instrument. Conversely, a 
variable that shifts demand but is excluded from marginal costs can be a valid instru-
ment in the estimation of equation (5). Thus, both cost shifters and demand shifters 
can provide exogenous variation that identifies ​​θ​1​​​. Similarly, “markup shifters” that 
create variation in ​​λ​​ ​(j,t)​​​ or ​​h​​ ​(j,t)​​​ can be valid instruments for either the supply side or 
the demand side.9 Another possibility, which we develop below, is to place a covari-
ance restriction between the structural error terms from both equations.

B.  Identification with Covariance Restrictions

We now consider the identification of the model using a covariance restriction, 
focusing on the linear parameters ​​(α, β, γ)​  = ​ θ​1​​​. We assume that the econometrician 

8 The difference between marginal costs and the supply relationship is the (perceived) inframarginal loss in 
revenue for selling an additional unit of quantity. Bresnahan (1982) refers to the inverse of this equation, with price 
on the left-hand side, as the “supply relation” and notes that it generalizes to different models of firm conduct. See 
Appendix A6 for a figure and additional discussion.

9 These might include functions of other products’ characteristics (Berry, Levinsohn, and Pakes 1995; Gandhi 
and Nevo 2021) or competitive events such as mergers, entry, or exit (e.g., Miller and Weinberg 2017).
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knows ​​θ​2​​​. The identification of ​​θ​2​​​ has been considered in other research (e.g., Berry, 
Levinsohn, and Pakes 1995; Berry and Haile 2024; Gandhi and Houde 2023), and 
we return to the prospect that covariance restrictions may identify ​​θ​2​​​ in the context 
of the empirical applications.

Stacking objects across markets, the econometrician observes vectors of prices 
and quantities (​P​ and ​Q​), a matrix of nonprice characteristics (​X​), and (possibly) 
other observables (​W)​. Using observables, the model, and ​​θ​2​​​, the econometri-
cian can evaluate the demand and supply transformations ​​h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​ and  
​​λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​​ for every ​​(j, t)​​ pair. We denote these values ​​h​jt​​​ and ​​λ​jt​​​ and treat them 
as observed. We use ​H​ to denote the stacked ​JT​ vector for ​​h​jt​​​.

The structural error terms can be decomposed as follows:

(6)	​​ ξ​jt​​  = ​ ξ​j​​ + ​ξ​t​​ + Δ​ξ​jt​​​,

(7)	​​ η​jt​​  = ​ η​j​​ + ​η​t​​ + Δ​η​jt​​​,

which incorporates product-specific persistent components (e.g., higher quality or 
higher cost), market-specific components (greater demand in a year and/or region), 
and an orthogonal mean-zero residual term. Define an augmented characteristics 
matrix, ​​​x ̃ ​​t​​​, as including the ​K​ observed covariates and a full set of dummy vari-
ables for products (​J − 1​) and markets (​T − 1​). Stacking across markets, we obtain  
​​X ̃ ​​ with dimension ​JT × ​(K + J + T − 2)​​.

We assume that the augmented characteristics are exogenous, in the sense that  
​E​[Δ ​ξ​jt​​ | ​​x ̃ ​​t​​]​  =  E​[Δ​η​jt​​ | ​​x ̃ ​​t​​]​  =  0​ for all ​j  =  1,  … , J​, as is commonly maintained in 
the literature. We also assume that ​E​[​v​ t​ ′ ​ ​v​t​​]​​ has full rank, where ​​v​t​​  = ​ [​p​t​​ ​​x ̃ ​​t​​]​​ is a ​ 
J × ​(K + J + T − 1)​​ matrix that combines prices with the augmented characteris-
tics. Two immediate implications of these assumptions are that ​E​[​​x ̃ ​​ t​ ′ ​ ​​x ̃ ​​t​​]​​ has full rank 
and that ​β​ and ​γ​ are trivially identified given knowledge of ​α​, following the standard 
arguments for linear regression.

We now focus on the identification of the price parameter, ​α​. We leverage a sin-
gle moment (a covariance restriction), which allows us to express our results using 
variance and covariance terms among random variables. This notation is familiar 
from univariate regressions. We obtain univariate regression analogs by taking a 
single variable (​​p​jt​​​), projecting it on the other characteristics (​​​x ̃ ​​jt​​​), and then con-
sidering a regression with the residualized values as the single regressor. By the 
Frisch-Waugh-Lovell theorem (and exogeneity of ​​​x ̃ ​​t​​​), the resulting coefficient esti-
mate is identical to one obtained in the full multivariate regression. The residuals 
from a regression of ​​p​jt​​​ on ​​​x ̃ ​​jt​​​ are given by

(8)	​​ P​​ ∗​  =  P − ​X ̃ ​ ​​[​​X ̃ ​ ′ ​ ​X ̃ ​]​​​ 
−1

​​​X ̃ ​ ′ ​ P,​

and they provide the component of price that is orthogonal to characteristics and 
fixed effects. Later in this paper, we residualize other variables in the same fashion. 
Throughout, we will use the superscript ​​​​​ ∗​​ to denote the residuals obtained from a 
regression of a variable on ​​​x ̃ ​​jt​​​.
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An implication of the rank condition is that the augmented characteristics do not 
fully explain prices. Therefore, the unconditional variance of ​​p​ jt​ 

∗ ​​ is positive—i.e.,  
​var​[​p​​ ∗​]​  >  0​.10 Here, and throughout the remainder of the paper, we omit ​jt​ sub-
scripts when the variable occurs in a covariance or variance expression or in the 
body of the text—e.g., ​p​ refers to ​​p​jt​​​ and ​x​ refers to ​​x​jt​​​. Note that ​​p​​ ∗​​ is distinguished 
from the length ​JT​ vector ​​P​​ ∗​​ by the use of lowercase and a lack of bold font.

We now formalize our first identification result, which links the OLS estimate to 
the price parameter. Following the discussion above, the probability limit (​T  →  ∞​)  
of the OLS estimate of ​α​ obtained from a regression of ​h​ on ​p​ and ​​x ̃ ​​ is

(9)	​​ α​​ OLS​  ≡ ​ 
cov​[​p​​ ∗​, h]​

 _________ 
var​[​p​​ *​]​

 ​   =  α + ​ 
cov​[​p​​ ∗​, Δξ]​  __________ 

var​[​p​​ ∗​]​
 ​ .​

The corresponding OLS residuals are given by ​Δ​ξ​​ OLS​  =  H − V ​​[​V ′ ​V]​​​ 
−1

​​V ′ ​H.​
We now construct a function that maps the price coefficient to a specific value for 

the covariance of the residual structural error terms:

PROPOSITION 1: The probability limit of the OLS estimate can be written as a 
function of ​α​, the residuals from an OLS regression, prices and quantities, and a 
covariance term:

(10) ​​ α​​ OLS​  =  α − ​  1 ___________  
α + ​ 

cov​[​p​​ ∗​, λ]​ _______ 
var​[​p​​ ∗​]​

 ​
 ​   ​ 
cov​[Δ ​ξ​​ OLS​, λ]​  ____________ 

var​[​p​​ ∗​]​
 ​  + α ​  1 ___________  

α + ​ 
cov​[​p​​ ∗​, λ]​ _______ 

var​[​p​​ ∗​]​
 ​
 ​   ​ 
cov​[Δξ, Δη]​  ___________ 

var​[​p​​ ∗​]​
 ​​ .

Therefore, ​α​ solves the following quadratic equation:

(11)        ​0  = ​ α​​ 2​​ ​+ ​(​ 
cov​[​p​​ ∗​, λ]​ _________ 

var​[​p​​ ∗​]​
 ​  − ​α​​ OLS​ + ​ 

cov​[Δξ, Δη]​  ___________ 
var​[​p​​ ∗​]​

 ​ )​α​

        ​        + ​(− ​α​​ OLS ​ ​ 
cov​[​p​​ ∗​, λ]​ _________ 

var​[​p​​ ∗​]​
 ​  − ​ 

cov​[Δ​ξ​​ OLS​, λ]​  ____________ 
var​[​p​​ ∗​]​

 ​ )​​.

All proofs are in Supplemental Appendix D. The terms in equation (11) are well 
defined under our rank condition and, aside from ​α​ and ​cov​[Δξ, Δη]​​, they have 
straightforward empirical analogs.

10 This expression refers to the unconditional variance of ​​p​​ ∗​​ (over products and markets). The uncondi-
tional variance is defined as ​var​[​p​​ ∗​]​  ≡  E​[​​(​p​​ ∗​)​​​ 2​]​ − E ​​[​p​​ ∗​]​​​ 2​​, where the expectations are taken over markets and 
products. The second component is zero because we assume that ​x​ includes a constant. The empirical analog is  
​​ 1 _ JT ​ ​∑ t=1​ T  ​​​∑ j=1​ J  ​​​​(​p​ jt​ 

∗ ​)​​​ 2​​.
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There are at most two solutions for ​α​ for any given value of ​cov​[Δξ, Δη]​​. Further, 
in most empirical models, ​α​ is likely to be the lower root. The following result pro-
vides formal conditions under which this is guaranteed:

PROPOSITION 2: The parameter ​α​ is the lower root of equation (11) if and only if

(12)	​ − ​ 1 _ α ​ cov​[Δξ, Δη]​  ≤  cov​[​p​​ ∗​, Δη − ​ 1 _ α ​Δξ]​​,

and, furthermore, ​α​ is the lower root of equation (11) if

(13)	​ 0  ≤ ​ α​​ OLS​ cov​[​p​​ ∗​, λ]​ + cov​[Δ ​ξ​​ OLS​, λ]​​.

In the first condition, it is helpful to think of ​− Δξ/α​ as the residual demand-side 
structural error term, scaled so that units are equivalent to those of marginal costs 
(and price). If ​cov​[Δξ, Δη]​  =  0​, the condition holds as long as prices tend to 
increase with demand and marginal costs, as occurs in most empirical models. For 
example, the condition holds when demand is linear. Thus, ​α​ is likely the lower root 
of equation (11) in most applications.

The second condition is derived using properties of the quadratic formula. 
Because the terms in equation (13) are constructed from data, the sufficient con-
dition can be estimated and used to test (and possibly reject) the null hypothesis 
that multiple negative roots exist. Henceforth, we assume that ​α​ is the lower root of 
equation (11).

The implication of this result—a one-to-one function mapping ​α​ to ​cov​[Δξ, Δη]​​
—is that the price coefficient can be recovered with information about the correla-
tion between residual demand and cost shocks in models with imperfect compe-
tition. Conversely, moments that pin down the price parameter also pin down the 
value of ​cov​[Δξ, Δη]​​.

C.  Estimation with Covariance Restrictions

Estimation can proceed with the method of moments (a general approach) by 
recasting the information about the covariance term as an orthogonality condi-
tion. One possibility is that demand-side and supply-side structural error terms are 
uncorrelated: ​cov​[Δξ, Δη]​  =  0​. Equivalently, this can be expressed as ​E​[Δ​ξ​jt​​ Δ​η​jt​​]​  
=  0​.

Under this assumption, the method of moments estimator uses the empirical 
analog of this condition and attempts to minimize its contribution to the objective 
function. For a case with one moment and one parameter, the method of moments 
estimate of ​α​ is given by

(14)	​​ ​α ˆ ​​​ CR​  = ​ arg min​ 
​α ̃ ​<0

​ ​ ​​
[

​ 1 _ 
T

 ​ ​ 1 _ 
J
 ​ ​∑ 

t
​ 
 

 ​​ ​  ∑ 
j∈

​ 
 

 ​​  Δ​ξ​jt​​​(​α ̃ ​)​Δ​η​jt​​​(​α ̃ ​)​
]

​​​ 
2
​,​

where ​Δ​ξ​jt​​​(​α ̃ ​)​​ and ​Δ​η​jt​​​(​α ̃ ​)​​ can be recovered from residualized (transformed) quan-
tities and prices, given the candidate parameter under consideration. Some care must 
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be taken to ensure convergence to the lower root. The generalized method of moments 
(GMM) may also be used with additional moments or when estimating multiple 
parameters jointly, in which case the sample moment may be weighted against other 
components of the GMM objective function using the standard approach.

An implication of Proposition 1 is that this estimate is consistent for the price 
parameter, i.e., ​​​α ˆ ​​​ CR​  →  α​. This is notable because, in general, the inclusion 
of a moment in a method of moments approach does not imply the consistent 
identification of an additional parameter.11 By contrast, a restriction on the covari-
ance between the structural error terms provides identification of the price parameter  
a priori. Pushing the result further, one could use the analytical expression in equa-
tion (11) to directly compute the coefficient estimate.12

This method of moments approach is employed in our first application to estimate 
models with random-coefficients logit demand and Bertrand pricing. In these mod-
els, ​β​ and ​γ​ can be estimated with OLS regression once ​​​α ˆ ​​​ CR​​ is obtained. Döpper 
et  al. (forthcoming) also employ the method of moments approach and illustrate 
how the additional parameters in ​​θ​2​​​ can be estimated with GMM using the nested 
fixed-point approach of Berry, Levinsohn, and Pakes (1995). For each candidate ​​​θ ̃ ​​2​​​, 
the covariance restriction estimator is applied to obtain ​​​α ˆ ​​​ CR​​(​​θ ̃ ​​2​​)​​. In the outer loop, 
an estimate of ​​θ​2​​​ is pinned down by micro-moments in the GMM objective function. 
More generally, covariance restrictions can be applied in conjunction with instru-
ments, and additional moments allow for efficiency improvements and specification 
tests (e.g., Hausman 1978; Hansen 1982).

The empirical variation that identifies ​α​ is the relative variation of (transformed) 
quantities and prices. When ​cov​[Δξ, Δη]​  =  0​, we obtain the following formal 
result:

PROPOSITION 3: If ​cov​[Δξ, Δη]​  =  0​, then a first-order approximation to the 
probability limit of the method of moments estimator is

(16)	​​ α​​ CR​  ≈  − ​√ 

______

 ​ 
var​[​h​​ ∗​]​

 _______ 
var​[​p​​ ∗​]​

 ​ ​.​

Intuition can be gleaned from the simultaneous equations representation of the 
model, using equations (1) and (5). Rearranging these to obtain inverse demand and 
inverse supply relationships, we have

(17a)    ​​    p​jt​​  = ​  1 __ α ​ ​h​​ ​(j,t)​ ​(​q​t​​,​w​t​​; ​θ​2​​) − ​ 1 __ α ​ ​x​jt​​ β − ​ 1 __ α ​​ ξ​jt​​    (Demand)​

(17b)    ​​    p​jt​​  =  −​ 1 __ α ​​λ​​ ​(j,t)​​(​q​t​​,​w​t​​; ​θ​2​​) + ​x​jt​​ γ + ​η​jt​​​    (Supply).

11 To highlight this, consider that Berry and Haile (2024) identify a class of moment conditions (micro-moments) 
that can pin down consumer heterogeneity but provides no identifying information about the price parameter.

12 The probability limit of the coefficient estimate is given by: 

(15)	​​ α​​ CR​  = ​  1 _ 
2
 ​​(​α​​ OLS​ − ​ 

cov​[​p​​ ∗​, λ]​ _________ 
var​[​p​​ ∗​]​

 ​  − ​√ 

______________________________

    ​​(​α​​ OLS​ + ​ 
cov​[​p​​ ∗​, λ]​ _________ 

var​[​p​​ ∗​]​
 ​ )​​​ 

2

​ + 4 ​ 
cov​[Δ​ξ​​ OLS​, λ]​  ____________ 

var​[​p​​ ∗​]​
 ​ ​  )​,​

which obtains from an application of the quadratic formula.
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By inspection, ​α​ determines the slope of both equations. A large ​α​ corresponds to a 
flatter inverse demand schedule (i.e., price-sensitive consumers) and a flatter inverse 
supply relationship (i.e., less market power). Uncorrelated shifts in such schedules 
tend to generate more variation in quantity than in price. By contrast, a small ​α​ 
corresponds to steeper inverse demand and supply relationships, such that uncor-
related shifts generate more variation in price than quantity. Formally connecting 
these observations generates an approximation of the lower root based on the ratio 
of variances. We illustrate this argument using a numerical example in Appendix B.

D.  Partial Identification: Bounds

We now show how our formal identification results can be used to construct 
bounds on the price parameter, which may be useful for inference when a covariance 
restriction along the lines of ​cov​[Δξ, Δη]​  =  0​ is not plausible. We first consider 
bounds that utilize prior knowledge of the sign of the correlation between ​Δξ​ and ​
Δη​. Next, we show how the model and the data together may bound the price coef-
ficient without any additional information.

In the first case, we assume that the econometrician can sign the correlation 
between ​Δξ​ and ​Δη​. This situation might arise, for example, if factor prices are 
influenced by macroeconomic conditions, such that there is a link between the unob-
served demand-side and supply-side error terms that is difficult to model explicitly. 
With a prior of the sign of ​cov​[Δξ, Δη]​​, bounds can be placed on ​α​. This is because 
there is a one-to-one mapping between the value of ​cov​[Δξ, Δη]​​ and the lower root 
of equation (11):

LEMMA 1 (Monotonicity):  Under Assumptions 1 and 2, a valid lower root of 
equation (11) (i.e., one that is negative) is decreasing in ​cov​[Δξ, Δη]​​. The range of 
the function is ​​(0, − ∞)​​.

Thus, if idiosyncratic demand and costs are correlated, such as through capac-
ity constraints (​cov​[Δξ, Δη]​  ≥  0​), then one-sided bounds can be placed on ​α​. 
More generally, let ​r​(m)​​ be the lower root of the quadratic in equation (11), eval-
uated at ​cov​[Δξ, Δη]​  =  m​. Then ​cov​[Δξ, Δη]​  ≥  m​ produces ​α  ∈ ​ (− ∞, r​(m)​]​​,  
and ​cov​[Δξ, Δη]​  ≤  m​ produces ​α  ∈ ​ [r​(m)​, 0)​​. The lower root, ​r​(m)​​, can be esti-
mated with the method of moments.13

In the second case, it can be that some values of the price parameter are unable 
to rationalize the data for any amount of correlation between ​Δξ​ and ​Δη​. These 
values can be ruled out. Thus, the demand and supply assumptions alone may be 
informative about the plausible range of ​α​. Formally, this occurs when the quadratic 
from equation (11) does not have a lower root and thus has no valid solution for ​α​. 
To see why, represent the quadratic from equation (11) as ​a​z​​ 2​ + bz + c​. By assump-
tion, one root is ​α  <  0​. As ​a  =  1​, the quadratic is U-shaped. If ​c  <  0​, then 
the existence of a negative root is guaranteed. However, if ​c  >  0​, then ​b​ must be 

13 Nevo and  Rosen (2012) develop conceptually similar bounds for estimation with imperfect instruments, 
defined as instruments that are less correlated with the structural error term than with the endogenous regressor.
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positive and sufficiently large for a negative root to exist. This places restrictions on  
​cov​[Δξ, Δη]​​, which is a component of ​b​. From the monotonicity result (Lemma 1), 
we can use the excluded values of ​cov​[Δξ, Δη]​​ to rule out values of ​α​.

We now state the result formally:

PROPOSITION 4 (Model-Based Bound): The model and data alone may bound  
​cov​[Δξ, Δη]​​ from below. The bound is given by

  ​  cov​[Δξ, Δη]​  >  var​[​p​​ ∗​]​ ​α​​ OLS​ − cov​[​p​​ ∗​, λ]​ 

                  + 2var​[​p​​ ∗​]​ ​√ 

____________________________

    ​(− ​α​​ OLS​ ​ 
cov​[​p​​ ∗​, λ]​ _________ 

var​[​p​​ ∗​]​
 ​  − ​ 

cov​[Δ ​ξ​​ OLS​, λ]​  ____________ 
var​[​p​​ ∗​]​

 ​ )​ ​​.

The bound exists if and only if the term inside the radical is nonnegative. Further, 
through equation (11), this lower bound on ​cov​[Δξ, Δη]​​ provides an upper bound 
on ​α​.

A model-based upper bound for ​α​ is obtained by evaluating the lower root of equa-
tion (11) at the model-based bound of ​cov​[Δξ, Δη]​​. In practice, priors over the the 
covariance of unobserved shocks may be combined with model-based bounds to 
further restrict the identified set.

E.  Discussion

The covariance restriction approach to estimation requires the econometrician 
to assess whether a covariance restriction between the structural error terms of the 
model is reasonable given the institutional details of the setting. It also requires the 
econometrician to specify the supply side in order to estimate demand parameters. 
We discuss these two requirements in this section.

There are settings in which the econometrician may have reason to think that 
the primary components of costs are uncorrelated with the drivers of demand. For 
example, consider demand for coffee beans in the United States. The cost of pro-
duction primarily depends on weather conditions and other agricultural concerns 
in Brazil, Colombia, Vietnam, and Guatemala.14 Demand in the United States is 
largely unrelated to such factors, so it may be reasonable to assume that demand 
shocks are orthogonal to marginal cost shocks.

On the other hand, there are environments where an assumption that demand 
and cost shocks are uncorrelated would be problematic. First, when products 
vary in quality, we would typically expect that products with higher (unob-
served) quality are produced at higher costs. If the econometrician only has the 
use of cross-sectional data, then fixed effects (​​ξ​j​​, ​η​j​​​) cannot be used to absorb the 
confounding variation, and the estimates would be biased. A second setting that 

14 Potential supply shocks include severe frosts, high temperatures, below-average rainfall, excessive rainfall, 
plant diseases, pests, and fertilizer costs. See https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf.

https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf
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would generate correlation in demand and supply shocks is one in which mar-
ginal costs vary with quantity produced. A third situation is simply when, even 
after addressing the above issues, the econometrician anticipates that the residual 
shocks will be correlated.

In the above circumstances, an understanding that the structural error terms are 
likely correlated may also correspond to a belief that the correlation has a partic-
ular sign or, potentially, falls within a specific range of values. In such cases, the 
econometrician can pair this understanding with our analytical results to place 
bounds on the structural parameters, as discussed above. We explore this approach 
with an application in Section IVC.

Further, in other cases, the correlation between demand and supply shocks can 
be accounted for with fixed effects or by explicitly modeling features that drive 
the correlation. In Section IIA, we discuss an example with online retail where 
fixed effects control for the correlation between demand and supply conditions. 
Similar arguments may be made for electronic goods or consumer products sold 
in brick-and-mortar stores (Döpper et  al. forthcoming; De los Santos, O’Brien, 
and Wildenbeest 2024). Later in this paper, we provide an extension to show how 
a known marginal cost function can be incorporated in the model (Section IIIB). 
In an application to the cement industry, we find that, after upward-sloping mar-
ginal costs are specified in the supply model, the covariance restriction approach 
yields an estimate similar to that obtained when employing the instruments used 
in the literature (Section IVB).

We now discuss the requirement that the econometrician specify the supply 
side of the model. In practice, empirical research in industrial organization often 
employs supply models to calculate markups or conduct counterfactuals. For these 
purposes, imposing the relevant supply model when estimating demand is not a 
substantive additional assumption about the economic environment. However, 
there are cases in which demand-side estimates are of interest independently, and 
the researcher may be hesitant to impose a supply model in these cases. To explore 
misspecification bias, we perform Monte Carlo exercises with a logit demand sys-
tem and a misspecified supply model, which we detail in Appendix C. If we assume 
Bertrand competition when the true model features joint profit maximization (i.e., 
perfect collusion), then the average bias in the price parameter is less than 4 per-
cent. The potential for bias appears to be mitigated by the fact that the covariance 
restriction approach also uses the demand side of the model. These simulations 
indicate that, in some cases, the bias from supply-side misspecification may not be 
large.

Finally, it is worthwhile to consider these two requirements in comparison to 
the requirements for instrumental variables. When estimating demand with instru-
ments (e.g., cost shifters), the econometrican does not need to fully specify a supply 
model. This reduces the chance that supply-side assumptions materially affect the 
estimates. On the other hand, the instrumental variable approach also requires an 
assessment about the covariance structure of unobservables, similar to the covari-
ance restriction approach. In the case of instruments, this assessment manifests as 
the exclusion restriction. We explore the connection between covariance restrictions 
and instruments in the next section.
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II.  Relationship to Instrumental Variables

The covariance restriction approach to estimation interprets observed endogenous 
variation in quantities and prices through the lens of an economic model. This differs 
from the instrumental variable approach, which seeks to isolate exogenous variation 
in prices. It also employs different assumptions than those used to obtain “residual 
instruments” or Hausman instruments. We provide formal distinctions in this section. 
We also use Monte Carlo simulations to illustrate that a covariance restriction can out-
perform instruments in finite samples, especially when the instrument become weak.

A.  Motivating Example

We begin with an economic model in which a traditional instrumental variable 
approach and the covariance restriction approach can yield consistent estimates. 
Consider a simplified setting in which a profit-maximizing monopolist faces linear 
demand in each of ​t  =  1,  … , T​ markets. The demand schedule takes the form

(18)	​​ q​jt​​  =  α ​p​jt​​ + ​ξ​j​​ + ​ξ​t​​ + Δ​ξ​jt​​​,

and marginal costs take the form

(19)	​ m​c​jt​​  = ​ η​j​​ + ​η​t​​ + Δ​η​jt​​,​

where quantity demanded ​​(​q​jt​​)​​ and price ​​(​p​jt​​)​​ are observed (we retain the subscript ​
j​ for notational consistency). Thus, the model includes product- and market-specific 
shocks but no observable characteristics other than price.

The key identification challenge for estimating ​α​ is that prices reflect unob-
served demand shocks. In our example, equilibrium prices are given by ​​p​jt​​  =  
​ 1 _ 2 ​ m​c​jt​​ + ​  1 _ 

2|α| ​​(​ξ​j​​ + ​ξ​t​​ + Δ​ξ​jt​​)​​. Thus, prices are higher for higher-quality products  

(​cov​[​p​jt​​, ​ξ​j​​]​  >  0​) and in high-demand markets (​cov​[​p​jt​​, ​ξ​t​​]​  >  0​). In settings with 

sufficient observations, these correlations can be controlled for with fixed effects 
for products and markets. However, the primary concern about price endogeneity 
remains if ​cov​[​p​jt​​, Δ​ξ​jt​​]​  ≠  0​.

Either instrumental variables or a covariance restriction could be used to resolve 
price endogeneity, after accounting for fixed effects. A standard instrumental vari-
able approach is to obtain auxiliary data about a component of costs that is orthog-
onal to ​Δ​ξ​jt​​​ and to use it as an instrument. For illustrative purposes, suppose that 
one could measure ​Δ​η​jt​​​ directly. Then, ​Δ​η​jt​​​ would be a valid instrument for ​​p​jt​​​ in 
the demand equation as long as ​cov​[Δ​ξ​jt​​, Δ​η​jt​​]​  =  0​. Alternatively, our results show 

that the covariance restriction ​cov​[Δ​ξ​jt​​, Δ​η​jt​​]​  =  0​ can be employed directly in esti-
mation, without observing ​Δ​η​jt​​​. Both approaches can be motivated by the same 
restriction on the covariance structure of unobservables.

To fix ideas, consider an online retailer that sells coffee tables made from two dif-
ferent materials—e.g., wicker and solid wood. Consumers may prefer one product 
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to another (​​ξ​j​​​), and overall demand for the retailer’s products may vary across mar-
kets (​​ξ​t​​​). On the supply side, products vary in procurement and distribution costs  
(​​η​j​​​), and marginal costs vary across markets due to differences in distribution net-
works and fuel costs (​​η​t​​​). The online retailer sells the products for different prices 
in each market in response to these features and local demand and supply condi-
tions, ​Δ​ξ​jt​​​ and ​Δ​η​jt​​​. For the online retailer, residual product-market variation in 
costs is due to the interaction of product characteristics with features of the local 
distribution networks. Depending on the material, similarly sized coffee tables can 
differ significantly in weight, which affects the amount of fuel needed for shipping. 
Thus, the product-market cost variation (​Δ​η​jt​​​) can be approximated by ​​weight​j​​ × ​
(fuel cost)​t​​​.

In this case, local market demand has no obvious link to idiosyncratic fluctuations 
in distribution costs. Based on this, one could estimate demand by first obtaining 
data on product-level characteristics (weight) and market-level features (fuel costs), 
and then using the interaction of the two to generate cost-shifter instruments in a 
standard instrumental variable approach. When controlling for product quality and 
market-level demand, it would be necessary to construct a measure with idiosyn-
cratic across-market variation by product; otherwise, the instrument would be fully 
absorbed by the fixed effects.15

Instead of collecting these auxiliary data to use as an instrument, one could impose 
the covariance restriction ​cov​[Δ​ξ​jt​​, Δ​η​jt​​]​  =  0​, directly following Proposition 
1. The identification assumption relies on the same logic as the instrument—that 
idiosyncratic product-market differences in costs are orthogonal to idiosyncratic 
product-market differences in preferences. Similar reasoning is used by Döpper 
et al. (forthcoming) when estimating demand for consumer products. After using 
fixed effects to account for obvious linkages between demand and costs, the residual 
supply-side structural error features product-specific changes in input costs and dis-
tribution costs, both of which have been exploited as instruments in recent research 
(e.g., Miller and Weinberg 2017; Backus, Conlon, and Sinkinson 2021). Thus, these 
examples—along with the applications in Section IV—demonstrate how a similar 
justification for the validity of instrumental variables may be used to motivate the 
covariance restriction approach.

B.  Excluded Instruments

We now provide formal distinctions between the sets of assumptions that under-
lie each approach. An instrument is an observable variable that satisfies both an 

15 Thus, it is often not sufficient to use a measure of ​​η​j​​​ or ​​η​t​​​ as an instrument. In practice, the econometrician 
often observes only a portion of marginal costs, in which case the instrument ​​z​jt​​​ can be expressed as a component 
of the full structural error, ​Δ​η​jt​​  =  ​z​jt​​ + ​​Δη ̃  ​​jt​​​. The unobserved component, ​​​Δη ̃  ​​jt​​​, may be interpreted as measure-
ment error—for example, if the interaction of fuel costs with weight is only a first-order approximation of actual 
shipping costs. Isolating a component of costs is an advantage when ​cov​[Δ ​ξ​jt​​, ​z​jt​​]​  =  0​, but ​cov​[Δ​ξ​jt​​, ​​Δη ̃  ​​jt​​]​  ≠  0​ 
as the instrument still yields a consistent estimate, while the covariance restriction approach may be biased. This 
bias becomes small when the orthogonal component ​z​ explains a greater share of idiosyncratic cost shocks. Thus, 
it can be helpful to understand the components that contribute the most to the marginal cost residual, even if they 
are unobserved in the data.
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exclusion condition and a relevance condition (e.g., Wooldridge 2010). Using the 
model of equations (18) and (19), these two conditions can be expressed as

(20a)	​ E​[Δ​ξ​jt​​​ z​jt​​]​  =  0​,

(20b)	​ E​[​p​ jt​ 
∗ ​ ​ z​jt​​]​  ≠  0​,

where, again, ​​p​​ ∗​​ denotes the residuals from the linear projection of ​p​ on ​​x ̃ ​​. We focus 
on the case of a single instrument, ​z​. Without loss of generality, we express ​​z​jt​​​ as 
a component of the supply-side structural error, ​Δη  =  z + ​Δη ̃ ​​ , where ​​Δη ̃ ​​  is the 
remaining unobserved component.16 Condition (20a) is, in general, distinct from 
the covariance restriction ​E​[Δ​ξ​jt​​ Δ​η​jt​​]​  =  0​. There are settings in which one holds 
while the other does not.

Under these assumptions, the probability limit of the two-stage least squares 
(2SLS) estimate of ​α​, given the instrument ​z​, is

(21)	​​ α​​ IV​  = ​ 
cov​[​h​​ ∗​, z]​

 ________ 
cov​[​p​​ ∗​, z]​

 ​  = ​ 
cov​[​h​​ ∗​, ​​p ˆ ​​​ ∗​]​

 _________ 
var​[​​p ˆ ​​​ ∗​]​

 ​​ ,

where ​​​p ˆ ​​​ ∗​​ is the residual from the linear projection of ​​p ˆ ​​ on ​​x ̃ ​​, and ​​p ˆ ​​ is defined as 
the predicted values from the linear projection of ​p​ on ​z​ and ​​x ̃ ​​.17 The first expres-
sion shows that the 2SLS estimate equals the ratio of the coefficient obtained in the 
reduced-form regression of ​​h​​ ∗​​ on ​z​ to the coefficient obtained in a first-stage regres-
sion of ​​p​​ ∗​​ on ​z​. The second expression provides a reformulation that is useful for our 
purposes: the 2SLS estimate equals the coefficient from a regression of ​​h​​ ∗​​ on ​​​p ˆ ​​​ ∗​​, the 
(residualized) first-stage predicted values.

The instrumental variable approach has two empirical requirements beyond what 
is needed for the covariance restriction approach. First, the excluded instrument 
must be observed in the data, as the corresponding estimators are constructed as a 
function of ​z​. Second, for ​​α​​ IV​​ to be well defined, the relevance condition (20b) must 
hold so that ​cov​[​p​​ ∗​, z]​  ≠  0​. That is, ​z​ must add explanatory power for prices above 
and beyond the variables in ​​x ̃ ​​.18

Inspection of equation (21) provides a way to compare the relevance condition to 
the assumptions of the covariance restriction approach. In the equation, the denom-
inator of the second expression has the term ​var​[​​p ˆ ​​​ ∗​]​​, which is similar to the term ​
var​[​p​​ ∗​]​​ in the denominator of equation (11). Each must be greater than zero for 

16 The instrument must be linearly independent from ​​x ̃ ​​; otherwise, equation (20b), which can alternatively 
be expressed as ​E​[​p​ jt​ 

∗ ​ ​z​ jt​ 
∗ ​]​​, would be violated. For the model in equations (18) and (19), ​​x ̃ ​​ contains a constant and 

dummy variables that capture market and product fixed effects. When the model incorporates product-market vary-
ing characteristics (​x​), a variable ​​x​​ k​​ is a candidate supply-side instrument when ​​γ​k​​  ≠  0​ and ​​β​k​​  =  0​. In this case, 
we can simply redefine ​​x ̃ ​​ such that it does not include ​​x​​ k​​. This maps ​z​ to the above interpretation (as a component of ​
Δη​) and avoids the need for more cumbersome notation in this section. Note that omitting ​​x​​ k​​ from ​​x ̃ ​​ and including 
it in ​Δη​ does not affect the validity of a covariance restriction when ​z  =  ​x​​ k​​ satisfies condition (20a). 

17 In terms of data, ​​​P ˆ ​​​ 
∗
​  =  ​P ˆ ​ − ​X ̃ ​ ​​[​​X ̃ ​ ′ ​​X ̃ ​]​​​ 

−1
​​​X ̃ ​ ′ ​​P ˆ ​​ and ​​P ˆ ​  =  ​Z ̃ ​ ​​[​​Z ̃ ​ ′ ​​Z ̃ ​]​​​ 

−1
​​​Z ̃ ​ ′ ​P​ for ​​Z ̃ ​  =  ​[Z​X ̃ ​]​​.

18 An implication is that choosing the instrument ​​z​jt​​  =  Δ ​η​jt​​​ will not work when there is no residual variation 
in costs, i.e., ​E​[​p​ jt​ 

∗ ​ Δ​η​jt​​]​  =  0​. However, in this case, the covariance restriction approach can still obtain point 
identification.
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the corresponding estimator to be well defined.19 The condition that ​var​[​​p ˆ ​​​ ∗​]​  >  0​ 
is stronger than the condition that ​var​[​p​​ ∗​]​  >  0​. In fact, when the former holds, 
the latter is strictly implied.20 From the Frisch-Waugh-Lovell theorem, we have ​ 
var​[​p​​ ∗​]​  ≥  var​[​​p ˆ ​​​ ∗​]​​. Thus, the covariance restriction approach can proceed under 
weaker assumptions about the conditional variance of prices.

Moreover, even if condition (20b) is satisfied in the limit, the instrumental vari-
able estimator can exhibit asymptotic bias in finite samples (e.g., Keane and Neal 
2024). This is an important consideration in practice, and many papers have been 
devoted to addressing the “weak instrument” problem when this condition is ten-
uously satisfied (e.g., Bound, Jaeger, and  Baker 1995; Staiger and  Stock 1997; 
Stock and Yogo 2005). The covariance restriction approach can side-step this issue 
because all of the residual variation in ​p​ is used to construct the estimate. In applica-
tions, ​var​[​​p ˆ ​​​ ∗​]​​ may be small relative to ​var​[​p​​ ∗​]​​ if ​z​ is constructed from one of many 
components of costs.

Thus far, we have framed a valid instrument as satisfying ​E​[Δ​ξ​jt​​ ​z​jt​​]​  =  0​. However, 
in the context of the model, an alternative is to use an instrument that satisfies ​ 
E​[Δ​η​jt​​ ​z​jt​​]​  =  0​. Such an instrument could be taken from the demand side of the 
model or constructed based on markup shifters, as in Berry, Levinsohn, and Pakes 
(1995). This approach uses the supply side of the model—specifically, the first-order 
conditions of equation (5)—to estimate the price parameter. We highlight this possi-
bility because it shows how either demand-side variation or supply-side variation can 
be used to pin down the price parameter, so long as the appropriate exclusion restric-
tion can be applied. The covariance restriction approach exploits both supply-side 
variation and demand-side variation implicitly, using a single restriction.

C.  Residual Instruments

We now compare our approach to the “residual instruments” approach, which 
uses a covariance restriction to achieve identification of simultaneous equations. 
Wooldridge (2010, 258) focuses on the case of two linear equations.21 To connect to 
this analysis, we rewrite demand and supply from our motivating example to obtain 
the following:

(22a)       ​​       q​jt​​  = ​ α​1​​​ p​jt​​ + ​ξ​j​​ + ​ξ​t​​ + Δ​ξ​jt​​​    (Demand),

(22b)       ​​       q​jt​​  =  −​α​2 ​​​p​jt​​ + ​α​2​​​(​η​j​​ + ​η​t​​ + Δ​η​jt​​)​​    (Supply),

where, again, the supply relationship comes directly from the monopolist’s 
first-order condition for profit maximization. Because we first consider the general 

19 As we discuss in Section IB, ​var​[​p​​ ∗​]​  >  0​ is an implication of ​E​[​v​ t​ ′ ​ ​v​t​​]​​ having full rank.
20 To see this, note that, by way of counterexample, if ​​x ̃ ​​ perfectly predicts ​p​ such that ​var​[​p​​ ∗​]​  =  0​, there is no 

residual variation for an instrument to explain.
21 The discussion in Wooldridge (2010) builds on a substantial literature on covariance restrictions in linear 

simultaneous equation models (e.g., Hausman and Taylor 1983; Hausman, Newey, and Taylor 1987). More recent 
research generalizes these results (Matzkin 2016).
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simultaneous equations approach, the price coefficients are allowed to vary across 
the equations.

The residual instruments approach to identification relies on the following 
moments for some observable ​z​:

(23a)	 ​E​[​z​jt​​ Δ​η​jt​​]​  =  0​,

(23b)	​ E​[​z​jt​​ ​p​ jt​ ∗ ​  ]​  ≠  0​,

(23c)	​ E​[Δ​ξ​jt​​ Δ​η​jt​​]​  =  0​.

The first two moments are analogous to instrumental variables conditions (20a) and 
(20b), though in this case ​z​ is a demand-side instrument and excluded from the sup-
ply equation. Here we assume that ​z​ is an observed component of the demand-side 
structural error, ​Δξ  =  z + ​Δξ ̃ ​​ . The third moment corresponds to the covariance 
restriction that ​cov​[Δξ, Δη]​  =  0​. These three moments identify the model.

Estimation is typically described as proceeding in two steps. In the first step, a 
standard instrumental variables regression with ​z​ as the instrument is used to iden-
tify ​​α​2​​​ and the supply equation. In the second step, the demand equation (22a) is 
estimated using the residuals from the first step, ​​  Δη​​, as an instrument. The residuals 
meet the necessary exclusion restriction in the second step due to the covariance 
restriction. Thus, in this framework, covariance restrictions have been interpreted 
as providing excluded instruments.22 As the above demonstrates, in addition to the 
covariance restriction, the residual instruments approach requires an additional two 
conditions about the existence of a valid instrument. In practice, it must also be the 
case that ​z​ and ​​  Δη​​ explain ​p​ to a substantial degree; otherwise, each step could suf-
fer from the weak instruments problem.

By contrast, our approach to estimation with covariance restrictions recognizes 
a theoretical connection between the slopes of demand and supply that is implied 
by the economic model: ​​α​1​​  = ​ α​2​​  =  α​. In this case, ​α​ is point identified with 
only one restriction: ​cov​[Δξ, Δη]​  =  0​. With this approach, there is no need for 
an excluded instrument (​z​).23 This provides a path for identification under a dif-
ferent set of assumptions while also avoiding the finite-sample challenges of weak 
instruments.

D.  Hausman Instruments

A number of articles in industrial organization have relied on prices in related 
markets as instruments in demand estimation (Gandhi and Nevo 2021). Typically, 
“related markets” refer to distinct geographic areas. In that setting, the price of a 

22 This interpretation has been influential. For example, McFadden states in lecture notes (dated 1999) that, 
“Even covariance matrix restrictions can be used in constructing instruments. For example, if you know that the 
disturbance in an equation you are trying to estimate is uncorrelated with the disturbance in another equation, then 
you can use a consistently estimated residual from the second equation as an instrument.” See https://eml.berkeley.
edu/~mcfadden/e240b_f01/ch6.pdf.

23 However, as discussed earlier, either a demand-side or supply-side instrument would also identify the model.

https://eml.berkeley.edu/~mcfadden/e240b_f01/ch6.pdf
https://eml.berkeley.edu/~mcfadden/e240b_f01/ch6.pdf
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product in some market ​s​ can be a valid instrument for the price of the same prod-
uct in market ​t​ if marginal costs are correlated across markets (e.g., due to shared 
production facilities) but demand is not. Such instruments are often referred to as 
“Hausman instruments” due to their use in Hausman (1996).

Here, we assume that the econometrician employs product and market fixed 
effects.24 For Hausman instruments to be valid, there must exist pairs of markets ​​

{​(t, s)​}​​ such that

(24a)	​ E​[Δ​ξ​jt​​ Δ​ξ​js​​]​  =  0​,

(24b)	​ E​[Δ​ξ​jt​​ Δ​η​js​​]​  =  0​,

(24c)	​ E​[Δ​η​jt​​ Δ​η​js​​]​  ≠  0​.

Condition (24a) states that the demand-side error terms are uncorrelated across mar-
kets, condition (24b) states that the demand-side error term of one market is uncor-
related with the supply-side error term in another market, and condition (24c) states 
that supply-side error terms are correlated across markets.

If these conditions are satisfied, then ​​p​js​​​ is a valid (excluded) instrument for ​​p​jt​​​ in 
the demand equation. Thus, analogous to the residual instruments approach in the 
previous section, this approach leverages assumptions about the correlation struc-
ture of unobservables to generate excluded instruments. This approach can suffer 
from the weak instruments problem, as we discuss in Section IIB.

Similar to our approach, the Hausman instruments are justified by assumptions 
about the correlational structure of demand and cost shocks. The set of assump-
tions are distinct: the three above conditions could be met when ​E​[Δ​ξ​jt​​ Δ​η​jt​​]​  ≠  0​,  
or conditions (24a)–(24c) may not be satisfied while ​E​[Δ​ξ​jt​​ Δ​η​jt​​]​  =  0​. One advan-
tage of the covariance restriction approach is that only a single restriction is required. 
A second advantage is that it avoids the potential weak instrument problem that 
Hausman instruments may be subject to in finite samples.

Note that the use of ​​p​js​​​ as an excluded instrument does not necessarily exploit all 
of the variation implied by conditions (24a)–(24c). As we discuss in Section IC, it is 
possible to use such orthogonality conditions directly with the method of moments 
rather than using them to justify an observed variable ​​(​p​js​​)​​ as an instrument. We 
explore generalizations of our approach with these and other covariance restrictions 
in Section IIIA.

E.  Finite Sample Comparison

We use Monte Carlo simulations to illustrate the finite sample performance of 
covariance restrictions relative to excluded instruments. For excluded instruments, we 
consider both traditional supply-side instruments and the demand-side instruments 
discussed in Section IIB. In both cases, we assume that the available instrument is 

24 In practice, researchers sometimes use Hausman instruments that reflect variation across all markets, in which 
case it is necessary to assume that ​​ξ​j​​  =  0​.
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fully efficient, in that it captures all of the relevant exogenous variation—i.e., ​z  =  Δη​ 
for a supply-side instrument and ​z  =  Δξ​ for the demand-side instrument. That is, 
we allow the econometrician to fully observe cost shocks when estimating demand or 
demand shocks when estimating the supply relationship.

For our simulations, we use the monopoly model of equations (18) and (19) 
for a single product. We normalize the time fixed effects (​​ξ​t​​, ​η​t​​​) to zero, and we set ​
α  =  1​, ​​ξ​j​​  =  60​, and ​​η​j​​  =  20​. We assume that ​Δ​ξ​jt​​​ and ​Δ​η​jt​​​ are mean-zero inde-
pendent normal distributions with standard deviations ​​σ​ξ​​​ and ​​σ​η​​​. We consider four 
specifications: (i) ​​σ​ξ​​  =  1​ and ​​σ​η​​  =  4​, (ii) ​​σ​ξ​​  =  2​ and ​​σ​η​​  =  3​, (iii) ​​σ​ξ​​  =  3​ and ​​
σ​η​​  =  2​, and (iv) ​​σ​ξ​​  =  4​ and ​​σ​η​​  =  1​. Moving from (i) to (iv), demand-side varia-
tion increases and supply-side variation decreases.

As is well known, if both supply and demand variation are present, then equi-
librium outcomes provide a “cloud” of data points that need not correspond to the 
demand curve. To illustrate, we present one simulation of 500 observations from each 
specification in Figure 1, along with the fit of an OLS regression of quantity on price. 
The expected values for the OLS estimator in each scenario are ​− 0.882​, ​− 0.385​, ​
0.385​, and ​0.882​. With greater demand-side variation, the endogeneity bias is larg-
er.25 Using the condition that ​cov​[Δξ, Δη]​  =  0​, we can correct for endogeneity and 

25 Inspection of Figure 1 further suggests there may be a connection between OLS bias and goodness of fit. 
Indeed, starting with equation (16), a few lines of additional algebra obtain ​α  ≈  − ​|​α​​ OLS​|​ / ​√ 

_
 ​R​​ 2​ ​​, where ​​R​​ 2​​ is from 

the residual OLS regression of ​​h​​ ∗​​ on ​​p​​ ∗​​. The approximation is exact with linear demand. This reformulation fails 

Figure 1. Prices and Quantities in the Monopoly Model

Notes: This figure displays equilibrium prices and quantities under four different specifications for the distribution 
of unobserved shocks to demand and marginal costs. The line in each figure indicates the slope obtained by OLS 
regression.
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construct a covariance restriction estimator for ​α​ as ​− ​√ 
__________

  var​[q]​/var​[p]​ ​​, because in 
this context the approximation of equation (16) is exact. The corresponding estimates 
for each simulation in Figure 1 are ​− 0.98​, ​− 1.00​, ​− 0.98​, and ​− 1.01​, close to the true 
parameter values.

We consider sample sizes of 25, 50, 100, and 500 observations. For each speci-
fication and sample size, we randomly draw 10,000 datasets, and for each we esti-
mate the model with a covariance restriction, with a supply-side instrument, and 
with a demand-side instrument. For the covariance restriction, we estimate ​α​ using  
​− ​√ 

__________
  var​[q]​/var​[p]​ ​​, as above. For a supply-side instrument, we estimate demand with 

2SLS, using the cost shock ​Δη​ as the instrument. For the demand-side instrument, 
we estimate the supply relationship with 2SLS, using ​Δξ​ as the instrument. All three 
approaches rely on the same orthogonality condition: ​E​[Δ​ξ​jt​​ Δ​η​jt​​]​  =  0​.

Table 1 provides the mean and (empirical) standard error of the point estimates 
for each specification and approach.26 Panel A shows that the covariance restric-
tion approach to estimation yields estimates that are consistently close to the true 
value. Panel B shows that with supply-side instruments, small-sample bias becomes 
substantial with smaller datasets and less variance in the cost shock. This is due to 

if ​​R​​ 2​  =  0​, but numerical results indicate robustness for values of ​​R​​ 2​​ that are approximately zero. We thank Peter 
Hull for suggesting this connection.

26 To avoid outliers arising from the weak instrument problem, we bound the estimates of ​α​ on the range ​​
[− 100, 100]​​. For specifications that suffer from weak instruments, this biases the standard errors toward zero. This 
affects specifications where the estimated standard error is greater than one—i.e., in 8 of 48 specifications.

Table 1—Small-Sample Properties: Relative Variation in Demand and Supply Shocks

Observations ​var​[η]​  ≫  var​[ξ]​​ ​var​[η]​  >  var​[ξ]​​ ​var​[η]​  <  var​[ξ]​​ ​var​[η]​  ≪  var​[ξ]​​
(i) (ii) (iii) (iv)

Panel A. Covariance restrictions
25 −1.006 (0.100) −1.019 (0.198) −1.017 (0.199) −1.004 (0.102)
50 −1.003 (0.069) −1.010 (0.134) −1.008 (0.136) −1.002 (0.069)
100 −1.002 (0.047) −1.005 (0.094) −1.006 (0.095) −1.001 (0.049)
500 −1.000 (0.021) −1.001 (0.041) −1.001 (0.041) −1.001 (0.021)

Panel B. Supply shifters (IV-1)
25 −1.007 (0.107) −1.044 (0.314) −1.273 (3.399) −0.820 (13.379)
50 −1.003 (0.074) −1.021 (0.202) −1.112 (0.623) −1.369 (10.661)
100 −1.002 (0.050) −1.010 (0.137) −1.057 (0.345) −1.509 (6.676)
500 −1.000 (0.022) −1.003 (0.060) −1.009 (0.138) −1.080 (0.444)

Panel C. Demand shifters (IV-2)
25 −0.835 (12.357) −1.303 (3.667) −1.040 (0.315) −1.005 (0.109)
50 −1.299 (11.845) −1.116 (0.561) −1.018 (0.203) −1.003 (0.073)
100 −1.557 (6.517) −1.052 (0.343) −1.012 (0.139) −1.001 (0.052)
500 −1.071 (0.420) −1.011 (0.137) −1.002 (0.060) −1.001 (0.023)

Notes: Results are based on 10,000 simulations of data for each specification and number of observations. The 
demand curve is ​​q​jt​​  =  α ​p​jt​​ + ​ξ​jt​​​ with ​α  =  − 1​ and ​​ξ​jt​​  = ​ ξ​j​​ + Δ​ξ​jt​​​. Marginal costs are ​m​c​jt​​  = ​ η​jt​​​, where  
​​η​jt​​  = ​ η​j​​ + Δ​η​jt​​​. We consider a single product ​​(j  =  1)​​ and vary the number of markets/observations from 25 to 
500. IV-1 estimates are calculated using 2SLS with cost shocks (​Δη​) as an instrument in the demand equation. 
Analogously, IV-2 estimates are calculated using 2SLS with demand shocks (​Δξ​) as an instrument in the supply 
relationship. We specify ​Δξ​ and ​Δη​ as mean-zero independent normal distributions with standard deviations ​​σ​ξ​​​ and ​​
σ​η​​​. We consider four specifications: (i) ​​σ​ξ​​  =  1​ and ​​σ​η​​  =  4​, (ii) ​​σ​ξ​​  =  2​ and ​​σ​η​​  =  3​, (iii) ​​σ​ξ​​  =  3​ and ​​σ​η​​  =  2​, 
and (iv) ​​σ​ξ​​  =  4​ and ​​σ​η​​  =  1​. Moving from (i) to (iv), demand-side variation increases and supply-side variation 
decreases.
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a weak instrument—for example, the mean first-stage ​F​-statistics in specification 
(iv) are 2.8, 4.2, 7.4, and 32.1 for markets with 25, 50, 100, and 500 observations, 
respectively. Panel C shows that with demand-side instruments, small-sample bias 
becomes substantial with smaller datasets and less variance in the demand shock, 
which is also due to a weak instruments problem.

Thus, in settings where instruments perform poorly, a covariance restriction may 
still provide a precise estimate when the assumptions about the environment are 
correct. In our simulations, the covariance restriction has smaller standard devia-
tions than either instrumental variables strategy. Intuitively, even though exogenous 
variation is not observed, the covariance restriction approach exploits how variation 
from demand and supply is reflected in equilibrium prices and quantities.

III.  Extensions

In this section, we provide two extensions. First, we discuss a broader class of 
potential covariance restrictions. Second, we consider the case of marginal cost 
functions. We use both extensions in the applications of Section IV.

A.  Generalized Covariance Restrictions

Thus far, our analysis has focused on covariance restrictions between own demand 
and cost shocks. Our results demonstrate that this moment is expected to generate 
a consistent estimate of the price parameter. We now consider different covariance 
restrictions that generalize the approach. Though these other covariance restrictions 
do not provide a similar guarantee of point identification, they may work well in 
certain settings. Additionally, they may pin down other parameters of interest (e.g., 
those in ​​θ​2​​​) in addition to the price parameter.

Consider the assumptions (24a)–(24c) that are required for the Hausman instru-
ments. Rather than using these assumptions to motivate the use of an instrument, the 
assumptions could be employed directly in a method of moments estimator, where, 
as in equation (14), the estimated residuals are generated from an econometric 
model for a candidate parameter. This approach has an advantage over the Hausman 
instruments approach in that the estimator would utilize all of the variation implied 
by the identifying moments.

Alternatively, it may be reasonable to assume that the variance of the demand 
shock does not depend on the level of the cost shock, and vice versa, which gen-
erates the moments ​​E​jt​​​[Δ​ξ​ jt​ 

2 ​ Δ​η​jt​​]​​ and ​​E​jt​​​[Δ​ξ​jt​​ Δ​η​ jt​ 
2 ​]​​. Or it may be reasonable to 

assume that average shocks are uncorrelated across groups of products, i.e.,  
​​E​gt​​​[​​‾ Δξ ​​gt​​ ​​‾ Δη ​​gt​​]​  =  0​, where ​​​‾ Δξ ​​gt​​​ and ​​​‾ Δη ​​gt​​​ are the mean demand and cost shocks 
for products in group ​g​.

Finally, it may be useful to consider cross-product covariance restrictions, i.e.,

(25)	​​ E​t​​​[Δ​ξ​jt​​ Δ​η​kt​​]​  =  0  ∀ j  ≠  k.​

These restrictions state that the demand shock for product ​j​ is uncorrelated with the 
cost shock for product ​k​. The expectation in equation (25) can be taken over ​t​ and ​
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k​ to obtain ​J​ restrictions, or over markets (as written above) to obtain ​J × ​(J − 1)​​ 
restrictions.27

We also note that our analytical results do not require a covariance value of zero. 
Proposition 1 can be used to construct consistent estimates for any ​ς​ for which  
​E​[Δ​ξ​jt​​ Δ​η​jt​​]​  =  ς​. In certain situations, it may be possible to employ an estimate 
of the correlation in demand and cost shocks to identify the price parameter. For 
example, Berry, Levinsohn, and Pakes (1995) report that this correlation is ​0.17​. For 
a similar empirical setting, it may be reasonable to invoke Proposition 1 to obtain an 
estimate of ​α​ conditional on this value.

B.  Marginal Cost Functions

If marginal cost depends on quantity, then an assumption that ​cov​[Δξ, Δη]​  =  0​ 
may not be credible in the baseline model of Section I. Here, we demonstrate how 
it is possible impose additional structure to control for the relationship for quantity 
and marginal costs and obtain identification. Consider the case in which marginal 
costs can be expressed as the following function:

(26)	​ m​c​jt​​  = ​ x​jt​​ γ + g​(​q​jt​​, ​w​t​​; τ)​ + ​η​jt​​​,

where ​g​( · )​​ is a function that depends on quantity, the data in ​​w​t​​​, and the vector of 
parameters ​τ​ that is contained in ​​θ​2​​​. The supply relationship becomes

(27)	​​ λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  =  − α ​p​jt​​ + α ​x​jt​​ γ + αg​(​q​jt​​, ​w​t​​; τ)​ + α ​η​jt​​​.

In this augmented model, both markup adjustments and varying marginal costs 
contribute to price endogeneity. If the econometrician omits ​g​( · )​​ from the model, 
then the residual cost shock is ​​​  Δη​​jt​​  ≡  g​(​q​jt​​, ​w​t​​; τ)​ + Δ​η​jt​​​. Then, ​cov​[Δξ, Δη]​  =  0​ 

does not imply that ​cov​[Δξ, ​  Δη​]​  =  0​, and the approach of Section I may not pro-
duce consistent estimates.

However, tracing through the steps developed in Section IB, we can show that ​
α​ is identified by the covariance restriction ​cov​[Δξ, Δη]​  =  0​ for any value of ​τ​,  
given knowledge of ​g​( · )​​. In that scenario, ​g​( · )​​ can be calculated from the data, 
given ​τ​. Let ​​g​jt​​​ (or simply ​g​) denote the values of ​g​( · )​​ for each ​j​ and ​t​, given ​τ​.  
The OLS regression of ​h​ on ​p​ and ​​x ̃ ​​ yields a price coefficient with the following 
probability limit:

(28)	​​ α​​ OLS​  =  α − ​ 1 _ α ​ ​ 
cov​[Δξ, λ]​ __________ 

var​[​p​​ ∗​]​
 ​  + ​ 

cov​[Δξ, g]​
 _________ 

var​[​p​​ ∗​]​
 ​  + ​ 

cov​[Δξ, Δη]​  ___________ 
var​[​p​​ ∗​]​

 ​​ .

This equation can be reformulated such that the demand-side error term, ​Δξ​, is 
replaced with the probability limit of OLS residuals, ​Δ​ξ​​ OLS​​, creating an analog to 

27 Similarly, the own-product restrictions may be assumed to hold separately by product, providing ​J​ restrictions.
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equation (10). Rearranging terms and assuming ​cov​[Δξ, Δη]​  =  0​ then yields an 
analog to equation (11):

COROLLARY 1: If marginal costs take the semilinear form of equation (26) and ​
cov​[Δξ, Δη]​  =  0​, then ​α​ solves the following quadratic equation:

  ​  0  = ​ (1 − ​ 
cov​[​p​​ ∗​, g]​

 _________ 
var​[​p​​ ∗​]​

 ​ )​ ​α​​ 2​​

	​ + ​(​ 
cov​[​p​​ ∗​, λ]​ _________ 

var​[​p​​ ∗​]​
 ​  − ​α​​ OLS​ + ​α​​ OLS​ ​ 

cov​[​p​​ ∗​, g]​
 _________ 

var​[​p​​ ∗​]​
 ​  + ​ 

cov​[Δ​ξ​​ OLS​, g]​
  ____________ 

var​[​p​​ ∗​]​
 ​ )​α​

	​ + ​(− ​α​​ OLS​ ​ 
cov​[​p​​ ∗​, λ]​ _________ 

var​[​p​​ ∗​]​
 ​  − ​ 

cov​[Δ​ξ​​ OLS​, λ]​  ____________ 
var​[​p​​ ∗​]​

 ​ )​​.

Given ​​θ​2​​​ and, thus, ​h​ and ​g​, there are at most two solutions for ​α​, and the lower 
root can be targeted in most applications. The method of moments can be used to 
jointly estimate ​α​ and ​τ​, using the covariance restriction to identify ​α​ and auxiliary 
moments to identify ​τ​. The auxiliary moments can consist of excluded instruments 
or the generalized covariance restrictions discussed above. We explore such a cost 
function approach to estimation in an application to cement (Section IVB).

IV.  Empirical Applications

We provide three empirical applications to demonstrate how covariance restric-
tions can inform inference. The three settings—RTE cereals, cement, and airlines—
differ in a variety of ways that influence our implementation. With RTE cereals, 
we proceed with estimation under ​cov​[Δξ, Δη]​  =  0​, assuming constant marginal 
costs and using fixed effects to absorb potentially confounding variation, as dis-
cussed in Section II. With cement, capacity constraints imply that marginal costs 
can increase with quantities. We follow an approach developed in the literature and 
model this effect explicitly, after which ​cov​[Δξ, Δη]​  =  0​ becomes credible (as 
in Section  IIIB). Finally, with airlines, the relationship between demand shocks 
and prices can be complicated; instead of modeling it directly, we apply a bounds 
approach (as in Section ID).

A.  Ready-to-Eat Cereals

We choose RTE cereals for our first application because, with panel data and 
appropriate fixed effects, a covariance assumption appears credible, for reasons 
that we explain below. Furthermore, it allows us to develop the covariance restric-
tion approach to estimation in the context of the random coefficients logit demand 
model (Berry, Levinsohn, and  Pakes 1995). We use the pseudo-real cereals data 
of Nevo (2000) and compare estimates obtained with a covariance restriction to 
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those obtained with the provided instruments. There are 24 products, 47 cities, and 
2 quarters.28

Let the indirect utility that consumer ​i​ receives from product ​j​ in market ​t​ (a com-
bination of a quarter and a city) be given by

(29)	​​ u​ijt​​  = ​ δ​jt​​​(​x​jt​​, ​p​jt​​, ​ξ​jt​​; ​θ​1​​)​ + ​ϕ​ijt​​​(​x​jt​​, ​p​jt​​, ​ν​i​​, ​D​i​​; ​θ​2​​)​ + ​ϵ​ijt​​​,

where ​​δ​jt​​​ denotes a common component and ​​ϕ​ijt​​​ provides consumer-specific utility 
as a function of data and ​​θ​2​​​. These components are specified as

	​​ δ​jt​​  =  α ​p​jt​​ + ​x​jt​​ β + ​ξ​j​​ + Δ​ξ​jt​​​,

​​	 ϕ​ijt​​  = ​ [​p​jt​​ ​x​jt​​]​​(Π​D​i​​ + Σ​ν​i​​)​​,

such that consumer-specific utility is linear in the parameters ​​[​α​i​​; ​β​i​​]​  = ​ [α; β]​ +  
Π ​D​i​​ + Σ ​ν​i​​​. Consumers can pick any one of the inside goods ​​(j  =  1,  … , 24)​​ or 
an outside good ​​(j  =  0)​​ that provides indirect utility of ​​u​i0t​​  = ​ ϵ​i0t​​​. Mapping to the 
notation of Section I, ​α​ and ​β​ are contained in ​​θ​1​​​, ​Π​ and ​Σ​ are in ​​θ​2​​​, and the data  
​​x​t​​​, ​​p​t​​​, ​​{​D​i​​}​​, and ​​{​ν​i​​}​​ are included in ​​w​t​​​.

Demand is expressed in terms of market shares.29 Let ​​N​t​​​ denote the number of 
consumers in a market, which we assume to be large. Under the assumption that 
unobserved shock ​​ϵ​ijt​​​ is distributed iid type 1 extreme value, the market share for 
product ​j​ in market ​t​ ​​(j  ≠  0)​​ can be written as

(30)	​​ s​jt​​  = ​ ς​jt​​​(​δ​t​​, ​w​t​​; ​θ​2​​)​  ≡ ​  1 _ ​N​t​​
 ​ ​ ∑ 
i=1

​ 
​N​t​​

 ​​  ​ 
exp​{​δ​jt​​ + ​ϕ​ijt​​​(​w​t​​; ​θ​2​​)​}​

   ___________________________   
1 + ​∑ k=1​ 

J  ​​exp​{​δ​kt​​ + ​ϕ​ikt​​​(​w​t​​; ​θ​2​​)​}​
 ​​.

Stacking across products, we obtain the vector-valued equation ​​s​t​​  = ​ ς​t​​​(​δ​t​​, ​w​t​​; ​θ​2​​)​​.  
Because each ​​ς​jt​​​( · )​​ is strictly increasing in ​​δ​jt​​​, this equation can be inverted to obtain ​​
δ​t​​​(​s​t​​, ​w​t​​; ​θ​2​​)​​. Each element ​​δ​jt​​​ corresponds to ​​h​jt​​  = ​ h​​ ​(j,t)​​​(​𝒔​t​​, ​w​t​​; ​θ​2​​)​​ in the notation of 
Section I. Thus, in implementation, the contraction mapping of Berry, Levinsohn, 
and Pakes (1995) can obtain the ​J × 1​ vector ​​h​t​​​, given ​​s​t​​​, ​​w​t​​​, and ​​θ​2​​​.

On the supply side of the model, marginal costs are given by

(31)	​ m​c​jt​​  = ​ η​j​​ + Δ​η​jt​​​.

Prices are set by multiproduct firms in Bertrand competition. Following the general 
results for multiproduct firms in Appendix A5, equilibrium markups take the form 
specified in equation (3), such that ​​λ​​ ​(j,t)​​​ can be expressed as a function of ​​s​t​​​, ​​w​t​​​,  and 

28 See also Dubé, Fox, and Su (2012); Knittel and Metaxoglou (2014); and Conlon and Gortmaker (2020). 
We focus on the “restricted” specification of Conlon and Gortmaker (2020), which addresses a multicollinearity 
problem by imposing that the parameter on ​Price × Incom​e​​ 2​​ takes a value of zero. We refer readers to Nevo (2000) 
for details on the data.

29 Following the discussion in Section IIA, market shares can be converted into quantities using market size: ​​
q​jt​​  =  ​s​jt​​ ​M​t​​​. Thus, if the data have quantities rather then market shares, then ​​M​t​​​ must be in ​​w​t​​​. 
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​​θ​2​​​. For additional details, see Appendix A2. Note that we follow Nevo (2000) and 
exclude market fixed effects from demand and supply.

We use the covariance restriction ​cov​[Δ​ξ​jt​​, Δ​η​jt​​]​  =  0​ in estimation. The 
supply-side structural error term incorporates some of the cost-shifter instruments 
that have been used in the recent literature, including time-varying, product-specific 
shipping costs (Miller and  Weinberg 2017) and the time-varying prices of 
product-specific ingredients (Backus, Conlon, and Sinkinson 2021). Given the fixed 
effects, these cost shifters can be conceptualized as providing the variation that is 
exploited in estimation. Furthermore, it may be reasonable to think that the mar-
ginal costs of consumer products are roughly constant, as often maintained in the 
literature (Villas-Boas 2007; Chevalier, Kashyap, and Rossi 2003; Hendel and Nevo 
2013; Miller and Weinberg 2017; Backus, Conlon, and Sinkinson 2021).

The parameters for estimation include ​α​ and ​β​ (contained in ​​θ​1​​​) and also ​Π​ 
and ​Σ​ (contained in ​​θ​2​​​). Identification of ​​θ​1​​​ is obtained under the exogeneity of ​​
x ̃ ​​ as conditions (1) and (5) are satisfied. Additional identifying assumptions are 
needed for ​​θ​2​​​. Some recent applications use micro-moments constructed from the 
observed behavior of individual consumers (e.g., Backus, Conlon, and Sinkinson 
2021; Döpper et  al. forthcoming) or survey data on the products that consum-
ers view to be their “second choice” (e.g., Grieco, Murry, and Yurukoglu 2023). 
Both of these strategies identify ​Π​ and ​Σ​ but not the price parameter (Berry 
and Haile 2024). This separability allows for a two-step approach to estimation 
in which the price parameter is estimated after the other parameters. An alter-
native strategy is to use instruments constructed from competitor characteristics 

Table 2—Point Estimates for RTE Cereal

Standard 
deviations

Interactions with demographics

Variable Means Income Age Child

Panel A. Available instruments
Price −32.019 1.803 4.187 – 11.755

(2.304) (0.920) (4.638) (5.198)
Constant – 0.375 3.101 1.198 – 

(0.120) (1.054) (1.048)
Sugar – 0.004 −0.190 0.028 – 

(0.012) (0.035) (0.032)
Mushy – 0.086 1.495 −1.539 –

(0.193) (0.648) (1.107)

Panel B. Covariance restrictions
Price −36.230 1.098 14.345 – 26.905

(1.216) (1.069) (1.677) (1.384)
Constant – 0.051 −0.156 1.072 –

(0.230) (0.286) (0.239)
Sugar – 0.003 −0.084 −0.004 –

(0.014) (0.018) (0.010)
Mushy – 0.130 0.301 −0.085 –

(0.161) (0.196) (0.103)

Notes: This table reports point estimates for the random-coefficients logit demand system esti-
mated using the Nevo (2000) dataset. Panel A employs the available instruments. Panel B 
employs covariance restrictions.
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(e.g., Berry, Levinsohn, and Pakes 1995; Gandhi and Houde 2023) to identify the 
additional parameters. As none of these options are available to us given the data 
and specification, we pursue an alternative approach based on a generalization of 
the covariance restriction assumption.

Specifically, we extend to all cross-product pairs the assumption that residual 
demand and cost shocks are uncorrelated, such that ​cov​[Δ​ξ​jt​​, Δ​η​kt​​]​  =  0​ for all ​j, k​.  
The joint restrictions are valid if the demand shock of each product is orthogonal 
to its own marginal cost shock and to those of all other products. As there are 24 
products in each market, the full covariance matrix of demand and cost shocks pro-
vides a sufficient number of moments to estimate the 12 nonlinear parameters in the 
specification.

Table 2 summarizes the results of estimation based on instruments (panel A) and 
covariance restrictions (panel B). In the application, ​​D​i​​​ consists of measures of log 
income and age and an indicator for whether the individual is a child; ​​ν​i​​​ is drawn as 
a standard normal to capture unobserved demographics; and ​x​ contains a constant, 
sugar content, and an indicator for whether the cereal gets mushy with milk. Both 
identification strategies yield similar mean own-price demand elasticities: ​− 3.70​ 
with instruments and ​− 3.61​ with covariance restrictions. Overall, the different 
approaches produce similar patterns for the coefficients. Most of the point estimates 
under covariance restrictions fall in the 95 percent confidence intervals implied by 
the specification with instruments, including that of the mean price parameter. The 
standard errors are noticeably smaller with covariance restrictions, which likely 
reflects that the covariance restriction approach to estimation more fully exploits the 
variation in the data. We conclude that in this setting—where a covariance restric-
tion appears credible—estimation with covariance restrictions and with instruments 
produce similar results.

B.  The Cement Industry

Our second empirical application considers a setting in which marginal costs 
increase with output. We build on the marginal cost specification from Section IIIB, 
in which the upward-sloping part of the cost function can be modeled explicitly. To 
illustrate, we consider the setting and data of Fowlie, Reguant, and Ryan (2016)—
henceforth, FRR—which examines market power in the cement industry.

The data are a balanced panel of 520 region-year observations for 20 regions over 
1984–2009, with the regions corresponding to selected urban areas in the United 
States. There are an average of 4.65 cement firms located in each region-year.30

The model features Cournot competition among cement plants facing capacity 
constraints. Let the market demand curve in region ​r​ and year ​t​ have a logit form:

(32) ​​ h​​ ​(rt)​​​(​Q​rt​​, ​w​rt​​; ​θ​2​​)​  ≡  ln​(​Q​rt​​)​ − ln​(​M​r​​ − ​Q​rt​​)​  = ​ x​rt​​ β + α ​p​rt​​ + ​ξ​r​​ + Δ​ξ​rt​​​,

30 See FRR for details on the data, which are available for download as part of the replication package.



266	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2025

where ​​Q​rt​​  = ​ ∑ j∈​ 
 
 ​​ ​  q​jrt​​​ is total quantity produced in the region-year, ​​M​r​​​ is the “mar-

ket size” of the region (and is contained in ​​θ​2​​​), and the only characteristic in ​​x​rt​​​ is a 
constant.31 Further, we allow marginal costs to vary with quantity according to

(33)	​ m​c​jrt​​  = ​ x​rt​​ γ + α ​p​rt​​ + ​g​jrt​​​(​q​jrt​​, ​w​rt​​; τ)​ + Δ​η​jrt​​​.

We follow FRR in the specification of the cost function and included fixed effects. 
In particular, we assume that ​g​ is a “hockey stick” function, ​​g​jrt​​​(​q​jrt​​, ​w​rt​​; τ)​  ≡  
2τ 1​{​q​jrt​​ / ​k​jr​​  >  0.9}​​(​q​jrt​​ / ​k​jr​​ − 0.9)​​, where ​​k​jr​​​ and ​​q​jrt​​ / ​k​jr​​​ are capacity and utiliza-
tion, respectively. Marginal costs are constant if utilization is less than 90 percent. 
Above this threshold, marginal costs increase linearly in quantities at a rate deter-
mined by ​τ  ≥  0​. Mapping to the notation of Section I, ​τ​ is a scalar element of ​​θ​2​​​, 
and ​​w​rt​​​ includes ​​k​jr​​​ for each firm (in addition to ​​M​r​​​).

As in our baseline model, correlation between price and the demand-side struc-
tural error term can arise due to both markup adjustments and the effect of demand 
on marginal costs. However, due to the presence of ​​g​jrt​​​( · )​​ in the cost function, 
the latter channel exists even under the covariance restriction ​cov​[Δ​ξ​rt​​, ​​‾ Δη ​​rt​​]​  =  0​,  
where ​​​‾ Δη ​​rt​​  = ​  1 _ J ​ Δ​η​jrt​​​. If ​​g​jrt​​​( · )​​ is known or can be identified with additional 
moments, then the covariance restriction is sufficient to resolve price endogeneity, 
as the model informs the markup adjustments. In estimation, we maintain the cova-
riance restriction at the market level.

Our demand and supply framework of equations (1) and (5) admits Cournot 
competition. As only market-level price and cost measures are observed, one must 
use the mean firm-level quantity ​​​q –​​rt​​  = ​  1 _ J ​ ​Q​rt​​​ to obtain an expression for mean 
market-level markups and ​λ​. In particular, when firms compete in quantities, we 
obtain ​​λ​rt​​  = ​  1 _ J ​ ​ 

dh _ 
dq

 ​ ​Q​rt​​​. Section IIIB establishes the necessary results to incorporate 
increasing marginal costs into our framework. In our implementation, we assume 
that ​ψ  =  800​, such that our ​​g​jrt​​​( · )​​ function is close to what is used in FRR, and 
then use a method of moments estimator.

In the context of the cement industry, whether the covariance restriction is rea-
sonable may depend primarily on the relationship between construction activity (a 
shifter of unobserved demand) and the prices of coal and electricity (determinants of 
unobserved marginal cost). There is a theoretical basis to assume orthogonality: for 
example, if coal suppliers have limited market power and roughly constant marginal 
costs, then coal prices should not respond much to demand for cement. Indeed, this 
is the identification argument of FRR, as coal and electricity prices are included in 
the set of excluded instruments. Consistent with this, the time series of coal prices 
between 1980 and 2010 is not obviously correlated with macroeconomic conditions 
(e.g., Miller, Osborne, and Sheu 2017).

We find that the covariance restriction approach yields a demand elasticity of 
−1.15, with a standard error of 0.16.32 This is close to the 2SLS estimate of −1.07 

31 We use logit demand rather than the constant elasticity demand of FRR to allow for adjustable markups. The 
2SLS results are unaffected by this choice. In our implementation, we assume ​​M​r​​  =  2 × ​max​t​​​{​Q​rt​​}​​.

32 We obtain bootstrapped standard errors based on 200 random samples constructed by drawing from the data 
with replacement.
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(standard error 0.18) that we obtain using the FRR instruments: coal prices, natural 
gas prices, electricity prices, and wage rates. That the two approaches generate sim-
ilar estimates may reflect that the identifying assumptions themselves are similar, 
with the main difference being whether the cost shifters are treated as observed 
(2SLS) or unobserved (covariance restrictions). By contrast, we obtain a demand 
elasticity of −0.47 and a standard error of 0.14 using OLS. If we use the covariance 
restriction approach without accounting for the presence of ​​g​jrt​​​( · )​​, we obtain a 
demand elasticity of −0.90 and a standard error of 0.13, which is in between the 
OLS and 2SLS estimates and demonstrates how accounting for marginal cost func-
tions can matter for estimation results.

C.  The Airline Industry

In our third empirical application, we examine demand for airline travel using the 
setting and data of Aguirregabiria and Ho (2012)—henceforth, AH. The economics 
of the industry suggest that the covariance restriction ​cov​[Δξ, Δη]​  =  0​ would not 
be credible. The reason is that airlines bear an opportunity cost when they sell a 
seat, because that seat can no longer be sold at a higher price to another passenger 
(Williams 2022). Thus, all else equal, greater demand generates higher marginal 
costs, inclusive of the opportunity cost. Absent a model of these opportunity costs, 
it would be difficult to achieve point identification using the covariance restriction. 
Instead, we illustrate how to proceed in such cases by constructing bounds on the 
parameters of interest.

The data feature 2,950 city pairs in the United States observed over the four quar-
ters of 2004. A market is a city-pair–quarter combination. Products are classified 
into the following groups: nonstop flights, one-stop flights, and the outside good. 
On average, there are 7.98 products per market (not including the outside good), 
including 2.04 nonstop products.33

The nested logit demand system can be expressed as

(34)   ​​   h​​ ​(j,mt)​​​(​q​mt​​, ​w​mt​​; ​θ​2​​)​  ≡  ln  ​s​jmt​​ − ln ​s​0mt​​ − σln ​​s –​​jmt|g​​ 

                           =  α ​p​jmt​​ + ​x​jmt​​ β + ​ξ​a​(j)​​​ + ​ξ​mt​​ + Δ​ξ​jmt​​​,

where ​​s​jmt​​​ is the market share of product ​j​ in market ​m​ in period ​t​. The condi-
tional market share, ​​​s –​​j|g​​  = ​ s​j​​ / ​∑ k∈g​ 

 
 ​​​  s​k​​​, is the the choice probability of product ​j​ 

given that its “group” of products, ​g​, is selected. The outside good is indexed as  
​j  =  0​. Consumer preferences vary by airline (​​ξ​a​(j)​​​​) and by route quarter (​​ξ​mt​​​), 
which we account for with fixed effects. Higher values of ​σ​ increase within-group 
consumer substitution relative to across-group substitution.34

33 We thank Victor Aguirregabiria for providing the data, which derive from the DB1B database maintained by 
the Department of Transportation. Replication is not exact, because the sample differs somewhat from what is used 
in the AH publication and because we employ a different set of fixed effects in estimation.

34 The covariates include an indicator for nonstop itineraries, the distance between the origin and destination 
cities, and a measure of the airline’s “hub sizes” at the origin and destination cities. In estimation, we include airline 
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We impose three sets of bounds. First, we assume that product-level demand and 
cost shocks are weakly positive, i.e., ​cov​[Δ​ξ​jmt​​, Δ​η​jmt​​]​  ≥  0​, based on the role of 
opportunity costs in the industry. Second, if the correlation in product-level shocks 
is weakly positive, it is also reasonable to assume that the correlation in group-level 
shocks is also weakly positive. That is, overall demand for nonstop flights in a 
market may drive up the opportunity costs for nonstop flights. Thus, building on 
Section IIIA, we apply the group-level inequality

(35)	​​ E​gmt​​​[​​‾ Δξ ​​gmt​​ ​​‾ Δη ​​gmt​​]​  ≥  0,​

where ​​​‾ Δξ ​​gmt​​  = ​  1 _ |g| ​ ​∑ j∈g​ 
 
 ​​  Δ​ξ​jmt​​​ and ​​​‾ Δη ​​gmt​​  = ​  1 _ |g| ​ ​∑ j∈g​ 

 
 ​​  Δ​η​jmt​​​ are the mean demand 

and cost shocks within a group-market-period. Finally, we combine these bounds 
with the model-based bounds developed in Section ID. We then construct an identi-
fied set by rejecting values of the parameters ​​(α, σ)​​ that fail to generate the data or 
that deliver negative correlations between costs and demand.

Figure 2 displays the rejected regions based on both the model and our assump-
tions on unobserved shocks. The gray region corresponds to the parameter values 
rejected by the model-based bounds; the model itself rejects some values of ​α​ if ​

fixed effects and route ​×​ quarter fixed effects. Market size, which determines the market share of the outside good, 
is equal to the total population in the origin and destination cities combined.

Figure 2. Analysis of Bounds in the Airlines Industry

Notes: This figure displays candidate parameter values for (​σ, α​). The gray region indicates the set of param-
eters that cannot generate the observed data from the assumptions of the model. The red region indicates the 
set of parameters that generate ​cov​[Δξ, Δη]​  <  0​, and the blue region indicates parameters that generate  
​cov​[​‾ Δξ ​, ​‾ Δη ​]​  <  0​. The identified set is obtained by rejecting values in the above regions under the assumption of 
(weakly) positive correlation. For context, the OLS and the 2SLS estimates are plotted. The parameter ​σ​ can only 
take values on ​​[0, 1)​​.
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σ  ≥  0.62​. As ​σ​ becomes larger, a more negative ​α​ is required to rationalize the 
data. The red region corresponds to parameter values that generate negative correla-
tion between demand and supply shocks; this region is rejected under the prior that ​

cov​[Δ​ξ​jmt​​, Δ​η​jmt​​]​  ≥  0​. The blue region provides the corresponding set for the prior ​
cov​[​​‾ Δξ ​​gmt​​, ​​‾ Δη ​​gmt​​]​  ≥  0​ and is similarly rejected.

The three regions overlap, but no region is a subset of another. The nonrejected 
values provide the identified set. We rule out values of ​σ​ less than ​0.599​ for any value 
of ​α​, as these lower values cannot generate positive correlation in both product-level 
and product-group-level shocks. Thus, the bounds serve to reject the logit model  
(​σ  =  0​) in favor of nested logit, even with relatively limited information about the 
covariance of shocks.

Similarly, we obtain an upper bound on ​α​ of ​− 0.067​ across all values of ​σ​. 
Combined, these bounds indicate that the mean own-price elasticity is less than ​
− 0.537​. For context, we plot the OLS and the 2SLS estimates in Figure 2. The OLS 
estimate falls in a rejected region and can be ruled out by the model alone. The 2SLS 
estimate falls within the identified set. This result is not mechanical, as these point 
estimates are generated with non-nested assumptions.

V.  Conclusion

We have shown that restrictions on the covariance between unobserved demand 
and cost shocks can resolve price endogeneity and allow for consistent estimation 
in models of imperfect competition. Unlike the method of instrumental variables, 
the covariance restriction approach does not require the econometrician to con-
struct an observed variable that is correlated with an exogenous portion of price. 
Instead, the endogenous variation in quantity and price is interpreted through the 
lens of the model to recover the structural parameters. Our three empirical applica-
tions demonstrate how the covariance restriction approach can be used in different 
environments.

More broadly, our analysis shows how imposing a supply-side model provides 
feasible paths to identification. Our formal results illustrate how demand-side 
instruments, in addition to covariance restrictions, can be sufficient to resolve price 
endogeneity. We also establish model-free bounds, in which the model and the data 
jointly can reject certain values of the price parameter, without the need for addi-
tional identifying assumptions. Conditional on meeting these bounds, there is typi-
cally a unique mapping between the price coefficient and the covariance of demand 
and costs shocks. In such settings, the covariance term can act as a free parameter to 
rationalize different values of the price coefficient.

The appeal of the covariance restriction approach relative to alternatives depends on 
data availability and the institutional details of the industry under study. In cases where 
cost shifters are observed, instrumental variables can recover demand parameters with 
only an informal understanding of supply. By contrast, the covariance restriction 
approach leverages all of the observed variation in prices and quantities, but it requires 
a formal supply-side model. Our results provide paths to identification that may facili-
tate research in areas for which strong supply-side instruments are unavailable.
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Appendix A. Demand System Applications

The demand system of equation  (1) is sufficiently flexible to nest monopolis-
tic competition with linear demand (e.g., as in the motivating example) and the 
discrete choice demand models that support much of the empirical research in 
industrial organization. The demand assumption can also be modified to allow for 
semilinearity in a transformation of prices, ​f​(​p​jt​​)​​:

(A1)	​​ h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  =  α f​(​p​jt​​)​ + ​x​jt​​ β + ​ξ​jt​​​.

Under this modified assumption, it is possible to employ a method of moments 
approach to estimate the structural parameters. In certain cases, it is straightforward 
to extend our analytical results.

For example, when ​f​(​p​jt​​)​  =  ln ​p​jt​​​, we can obtain our identification results under 
a modified assumption about the structure of costs. The optimal price in such 
demand systems takes the multiplicative form ​​p​jt​​  = ​ μ​jt​​ · m​c​jt​​​, where ​​μ​jt​​​ is a markup 
that reflects demand parameters and (possibly) demand shocks. Assume that log 
marginal costs are linear in characteristics, such that ​ln m​c​jt​​  = ​ x​jt​​ γ + ​η​jt​​​. As in 
Section  IB, consider the augmented exogenous characteristics ​​x ̃ ​​ to include a full 
set of dummy variables for products and markets. The probability limit (​T  →  ∞​) 
of the OLS estimate of ​α​ obtained from a regression of ​h​ on ​ln p​ and ​​x ̃ ​​ is given by

(A2)	​​ α​​ OLS​  =  α + ​ 
cov​[ln μ, Δξ]​  ___________ 

var​[ln ​p​​ ∗​]​
 ​  + ​ 

cov​[Δη, Δξ]​  ___________ 
var​[ln ​p​​ ∗​]​

 ​ .​

This expression is analogous to equation (1). Therefore, the results developed in this 
paper extend in a straightforward manner.

We provide some typical examples below for single-product firms with Bertrand 
competition. We then show how multiproduct firms and other models of competition 
fit within the framework of Section I.

A1.  Nested Logit Demand

Following the exposition of Cardell (1997), let the firms be grouped into  
​g  =  0, 1,  … , G​ mutually exclusive and exhaustive sets, and denote the set of firms 
in group ​g​ as ​​​g​​​. An outside good, indexed by ​j  =  0​, is the only member of group 
0. Then the left-hand side of equation (1) takes the form

	​​ h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  ≡  ln​(​s​jt​​)​ − ln​(​s​0t​​)​ − σln​(​​s –​​j|g,t​​)​​,

where ​​​s –​​j|g,t​​  = ​ ∑ j∈​​g​​​ 
 
 ​​​ 

​s​jt​​ ______ 
​∑ j∈​​g​​​ 

 
 ​​ ​ s​jt​​

 ​​ is the market share of firm ​j​ within its group. Shares are 

obtained by dividing quantities by the market size ​​M​t​​​. The market size and group 
identities are contained in ​​w​t​​​. The parameter ​σ  ∈ ​ [0, 1)​​ is the only element of ​​θ​2​​​, and 
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it determines the extent to which consumers substitute disproportionately among 
firms within the same group. If ​σ  =  0​, then the logit model obtains.

For single-product firms, the first-order condition for profit maximization  
​​p​jt​​ − m​c​jt​​  =  − ​  1 _ 

d​q​jt​​ / d​p​jt​​
 ​ ​q​jt​​​ can be expressed as

(A3)	​​ μ​jt​​  =  − ​  1 _ 
d​s​jt​​ / d​p​jt​​

 ​ ​s​jt​​​.

For equation (3) to hold, it must be that ​​λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  =  − α ​μ​jt​​​. We can solve for ​​
λ​​ ​(j,t)​​​ in the nested logit model by taking the derivatives of ​s​ with respect to ​p​ to obtain

(A4)	​​ λ​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  = ​   1 __________________  
​  1 _ 1 − σ ​ − ​s​jt​​ − ​  σ _ 1 − σ ​ ​​s –​​j|g,t​​

 ​.​

Thus, ​​λ​​ ​(j,t)​​​ can be expressed as a function of ​​q​t​​​ and ​​w​t​​​ and ​​θ​2​​​. In our third applica-
tion, we use the nested logit model to estimate bounds on the structural parameters 
(Section IVC).

A2.  Random Coefficients Logit Demand

In our application in Section  IVA, we develop the underlying indirect utility 
model of the random coefficients logit model, following Berry (1994) and Nevo 
(2000, 2001). Here, we provide some additional results using the notation from that 
section.

The probability with which consumer ​i​ selects product ​j​ ​​(j  ≠  0)​​ is

(A5)	​​ ρ​ijt​​​(​δ​t​​, ​w​t​​; ​θ​2​​)​  ≡ ​ 
exp​{​δ​jt​​ + ​ϕ​ijt​​​(​w​t​​; ​θ​2​​)​}​

   ___________________________   
1 + ​∑ k=1​ 

J  ​​exp​{​δ​kt​​ + ​ϕ​ikt​​​(​w​t​​; ​θ​2​​)​}​
 ​​,

which is obtained under the assumption that ​ϵ​ is distributed iid type 1 extreme value. 
Equation (30) aggregates choice probabilities across consumers. This calculation of 
expected market shares converges to observed shares as ​​N​t​​  →  ∞​. In implementa-
tion, equation (30) is often approximated by summing across a number of simulated 
consumers, with each simulated consumer being characterized by a set of demo-
graphics ​​{​D​i​​, ​ν​i​​}​​.

Consider a candidate parameter vector ​​​θ ̃ ​​2​​​ that includes ​Π​ and ​Σ​. Given ​​​θ ̃ ​​2​​​, Berry, 
Levinsohn, and Pakes (1995) prove that a contraction mapping recovers the ​J × 1​ 
vector ​​δ​t​​​(​s​t​​, ​w​t​​, ​​θ ̃ ​​2​​)​​ such that the choice probabilities implied by the model match the 
market shares observed in the data. This “mean valuation” vector is equivalent to 
the vector ​​h​t​​​ in our notation. These vectors can be stacked to obtain the full ​JT × 1​ 
vector ​H​ in a single procedure.

The supply restriction from equation (3) is satisfied when (multiproduct) firms 
compete by setting prices, following our more general results for differentiated-prod-
ucts Bertrand in Appendix A5. For example, for the special case with single-product 



272	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2025

firms and no random coefficient on price (​α  = ​ α​i​​  ∀ i​), the Bertrand-Nash equilib-
rium yields

(A6)	​​ λ​​ ​(j,t)​​​(​s​t​​, ​w​t​​; ​θ​2​​)​  = ​ 
​s​jt​​
 _______________  

​ 1 _ ​N​t​​
 ​ ​∑ i​ 

 
 ​​​ ρ​ijt​​​(1 − ​ρ​ijt​​)​

 ​​,

where the denominators integrate over the (product of) consumer-specific choice 
probabilities. From an econometric standpoint, ​λ​ is free from the price parameter ​α​ 
because it depends only on market shares and consumer-specific choice probabili-
ties, ​​ρ​ijt​​​(​δ​t​​, ​w​t​​; ​θ​2​​)​​. As discussed above, ​​δ​t​​​ can be obtained as a function of shares.

More complicated versions of ​​λ​​ ​(j,t)​​​ can be constructed numerically; however, 
this step is not necessary as estimation can proceed by implementing the covariance 
restriction directly using the method of moments. Confirming the restrictions on ​
h​ and ​λ​ ensures identification of the price coefficient and other linear parameters, 
conditional on ​​​θ ̃ ​​2​​​. The identification of ​​θ​2​​​ is a distinct issue that has received a 
great deal of attention from theoretical and applied research (e.g., Waldfogel 2003; 
Romeo  2013; Berry and Haile 2014; Gandhi and Houde 2023; Miller and Weinberg 
2017). We demonstrate how to estimate these parameters using additional covari-
ance restrictions in the application in Section IVA.

A3.  Constant Elasticity Demand

With the modified demand assumption of equation (A1), the constant elasticity of 
substitution (CES) demand model of Dixit and Stiglitz (1977) can be incorporated:

	​​ h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  ≡  ln​(​q​jt​​/​​q –​​t​​)​  =  β + α ln​(​p​jt​​/​Π​t​​)​ + ​ξ​jt​​​,

where ​​​q –​​t​​​ is an observed demand shifter, ​​Π​t​​​ is a price index, and ​α​ provides the con-
stant elasticity of demand. In our notation, ​​​q –​​t​​​ and ​​Π​t​​​ are contained in ​​w​t​​​.

This model is often used in empirical research on international trade and firm pro-
ductivity (e.g., De Loecker 2011; Doraszelski and Jaumandreeu 2013). Due to the 
constant elasticity, profit maximization and uncorrelatedness imply ​cov​[p, ξ]​  =  0​,  
and OLS produces unbiased estimates of the demand parameters when marginal 
costs are constant.35 Indeed, this is an excellent illustration of our basic argument: 
so long as the data-generating process is sufficiently well understood, it is possible 
to characterize the bias of OLS estimates.

A4.  Other Demand Systems

The demand assumption in equation  (1) accommodates many rich demand 
systems. Consider the linear demand system, ​​q​jt​​  = ​ β​j​​ + ​∑ k​ 

 
 ​​​ α​jk​​ ​p​k​​ + ​ξ​jt​​​, which 

35 The international trade literature following Feenstra (1994) considers nonconstant marginal costs, which 
requires an additional restriction. See Section IVB for an extension of our methodology to nonconstant marginal 
costs.
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sometimes appears in identification proofs (e.g., Nevo 1998) but is seldom applied 
empirically due to the large number of price coefficients.

The system can be formulated such that ​​h​​ ​(j,t)​​​(​q​t​​, ​w​t​​; ​θ​2​​)​  ≡ ​ q​jt​​ − ​∑ k≠j​ 
 
 ​​​  α​jk​​ ​p​kt​​​. In 

this demand system, other prices ​​(​p​kt​​)​​ are elements of ​​w​t​​​, and the cross-product 
price coefficients ​​α​jk​​​(k  ≠  j)​​ are elements of ​​θ​2​​​. In addition to the own-product 
uncorrelatedness restrictions that could identify ​​α​jj​​​, one could impose cross-product 
covariance restrictions to identify ​​α​jk​​​ (​k  ≠  j​). We discuss these cross-product cova-
riance restrictions in the first application (Section IVA). A similar approach could be 
used with the almost ideal demand system of Deaton and Muellbauer (1980).

A5.  Multiproduct Firms with Bertrand Competition

We illustrate how our framework more generally incorporates multiproduct firms 
with the case of Bertrand pricing. For this setting, we assume that the derivatives ​∂ ​
q​j​​/∂ ​p​k​​​ exist and that D, the ​J × J​ matrix of derivatives ​∂ ​q​j​​/∂ ​p​k ​​∀ j, k  ∈  ​, is invert-
ible. For matrix elements, let ​j​ index rows and ​k​ index columns. The market sub-
script, ​t​, is omitted to simplify notation.

We begin by establishing properties of demand using the restriction ​​h​​ ​(j)​​​(q, w; ​θ​2​​)​  
=  α ​p​j​​ + ​x​j​​ β + ​ξ​j​​​ from equation (1). Taking the derivative with respect to ​​p​j​​​ (hold-
ing fixed ​x​, ​ξ​, and ​​p​k​​ ∀ k  ≠  j​), we obtain

(A7)	​​ ∑ 
k
​ 

 

 ​​ ​   ∂ ​h​​ ​(j)​​ _ ∂ ​q​k​​
 ​ ​ 
∂ ​q​k​​ _ ∂ ​p​j​​

 ​  =  α​.

Similarly, we obtain ​​∑ k​ 
 
 ​​​ ∂ ​h​​ ​(j)​​ _ ∂ ​q​k​​

 ​ ​ 
∂ ​q​k​​ _ ∂ ​p​ℓ​​

 ​  =  0 ∀ ℓ  ≠  j​. These restrictions on demand admit 
the expression

(A8)	​ D  =  αI  ⇒  D  =  α ​​​ −1​​.

where ​​ denotes the ​J × J​ matrix of derivatives ​∂ ​h​​ ​(j)​​ / ∂ ​q​k​​ ∀ j, k  ∈  ​, ​D​ is defined 
as above, and ​I​ is a ​J × J​ identity matrix. Because ​​h​​ ​(j)​​​ is a known function of q, ​w​,  
and ​​θ​2​​​, its derivatives with respect to ​​q​k​​​ and, thus, each element of  can be 
calculated, and ​​​​ −1​​ can be solved for. We let ​A  ≡ ​ ​​ −1​​ such that ​A​ denotes the 
matrix of demand derivatives up to the scalar ​α​.

We now turn to the supply side of the model. Let ​​K​​ m​​ denote the set of products 
owned by multiproduct firm ​m​. When the firm sets prices on each of its products to 
maximize joint profits, there are ​|​K​​ m​|​ first-order conditions, which can be expressed as

	​​  ∑ 
k∈​K​​ m​

​ 
 

 ​​  ​ 
∂ ​q​k​​ _ ∂ ​p​j​​

 ​​(​p​k​​ − m​c​k​​)​  =  − ​q​j​​  ∀ j  ∈ ​ K​​ m​.​

Let ​​D​​ m​​ denote the matrix of derivatives ​∂ ​q​j​​ / ∂ ​p​k​​ ∀ j, k  ∈ ​ K​​ m​​, and let ​​q​​ m​​ and ​​
μ​​ m​​ denote the stacked vector of ​​q​j​​​ and ​​μ​j​​  = ​ p​j​​ − m​c​j​​​ for ​j  ∈ ​ K​​ m​​. Stacking the 
first-order conditions yields

(A9)	​​ D​​ m​ ​μ​​ m​  =  − ​q​​ m​​,
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and solving for markups, ​​μ​​ m​​, we obtain

(A10)	​​ μ​​ m​  =  − ​​(​D​​ m​)​​​ −1​ ​q​​ m​​.

Equation (3) requires the construction of ​λ​ such that ​​μ​​ m​  =  − ​ 1 _ α ​ ​λ​​ m​​. In the case 
of multiproduct firms with Bertrand competition, it immediately follows that

(A11)	​​ λ​​ m​  =  α ​​(​D​​ m​)​​​ −1​ ​q​​ m​​.

Following the conditions on demand above, we have ​D  =  αA​, and taking the 
corresponding element-by-element minor, we have ​​D​​ m​  =  α​A​​ m​​. This yields

(A12)	​​ λ​​ m​  =  α ​​(α ​A​​ m​)​​​ −1​ ​q​​ m​​,

(A13)	​​ λ​​ m​  = ​​ (​A​​ m​)​​​ −1​ ​q​​ m​​.

Because ​​A​​ m​​ is a known function of ​q​, ​w​, and ​​θ​2​​​, ​​λ​​ m​​ can be constructed of the same 
arguments. Thus, we see that multiproduct Bertrand fits in the class of models spec-
ified by equation (3).

A6.  Alternative Models of Competition

Our restriction on additive markups from equation  (3) applies to a broad set 
of competitive assumptions. Consider, for example, Nash competition among 

Figure A1. Supply Relationship

Notes: The figure plots an illustrative example of demand (​D​), marginal costs (​MC​), and the supply relationship 
described in the paper (​SR​). The supply relationship can be interpreted as the opportunity cost to the firm of selling 
an additional unit. The opportunity cost is the sum of the marginal cost and the inframarginal losses of lowering 
price. The equilibrium price (​​P​​ ∗​​) is determined by the intersection of ​D​ and ​SR​.
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profit-maximizing firms that have a single choice variable, ​a​, and constant marginal 
costs. The individual firm’s objective function is

	​​  max​ 
​a​j​​|​a​i​​,i≠j

​​​[​p​j​​​(a)​ − m​c​j​​]​​q​j​​​(a)​.​

This generalized model of Nash competition nests Bertrand (​a  =  p​) and Cournot 
(​a  =  q​). The first-order condition, holding fixed the actions of the other firms, is 
given by

	​​ p​j​​​(a)​  =  m​c​j​​ − ​ 
​p​ j​ ′ ​​(a)​

 _____ 
​q​ j​  '​​(a)​

 ​ ​q​j​​​(a)​.​

In equilibrium, we obtain the structural decomposition ​p  =  mc + μ​, where ​μ​ 
incorporates the structure of demand and its parameters. This decomposition pro-
vides a restriction on how prices move with demand shocks, aiding identification. 
Using restrictions about demand, such as those imposed by equation (1), one can 
construct the appropriate form of ​​λ​​ ​(j,t)​​​( · )​​ and solve for the price coefficient. 
Related first-order conditions can be obtained in other contexts, such as consistent 
conjectures.

Bresnahan (1982) refers to the above equation as the “supply relation” and notes 
that it generalizes to many different forms of conduct. Figure A1 plots the supply 
relationship along with the demand curve for an illustrative setting. The supply rela-
tionship lies above the marginal cost curve, and the difference is given by the infra-
marginal loss in revenue for selling an additional unit (i.e., the gap between price 
and marginal revenue). As the inframarginal loss has an opportunity cost interpreta-
tion, the supply relation can be conceptualized as the sum of the marginal cost curve 
and the firm’s opportunity cost curve, with the latter incorporating any market power 
that the firm has. The equilibrium price is determined by the intersection of demand 
and the supply relationship. This is equivalent to the equilibrium price that obtains 
if the firm sets the price to equate marginal revenue and marginal cost.

Appendix B. Empirical Variation in Prices and Quantities

In Section IC, we state that the empirical variation that identifies the price param-
eter (​α​) under a covariance restriction relates to the relative variation in (trans-
formed) quantities and prices. In this Appendix, we provide a numerical example 
for illustrative purposes, using the monopoly model of equations (18) and (19).

We assume that demand and marginal cost are given by

	​​ q​jt​​  =  60 + α ​p​jt​​ + Δ ​ξ​jt​​  and  m​c​jt​​  =  20 + Δ​η​jt​​​.

We consider four values of ​α​: −0.2, −0.5, −1.0, and −1.5. As the slope of the inverse 
demand relationship is ​1 / α​ and that of the inverse supply relationship is ​− 1 / α​, the 
more negative values for ​α​ generate flatter inverse demand/supply relationships. We 
let ​Δη  ∼  2.5 × N​(0, 1)​​ and let ​Δξ  ∼ ​  2.5 _ − α ​ × N​(0, 1)​​, with ​α​ affecting the support 
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of ​Δξ​ so that both variables have the same support if measured in the same units. 
We then take 500 draws on these demand and cost shocks for each of the four price 
parameters and compute the equilibrium prices and quantities.

Figure B1 shows the results. The four panels correspond to the four values of ​α​. 
The panels have comparable scales (16 units by 16 units) and are recentered along the ​
x​- and ​y​-axes. In each, the equilibrium price-quantity pairs form a cloud with no appar-
ent slope. The reason is that supports of ​Δξ​ and ​Δη​ are selected so that the supply-side 
and demand-side variation is balanced. (Figure 1 illustrates how the clouds would 
slope down if the supply shocks dominate and up if the demand shocks dominate.) 
The four panels in Figure B1 illustrate that a more negative value of ​α​ leads to greater 
variation in quantities relative to variation in prices. The reason is that the inverse 
demand and supply relationships are flatter, and uncorrelated shifts in flatter inverse 
supply and demand relationships produce more variation in quantities, all else equal. 
Intuitively, then, it should be possible to compare the relative variance of quantity and 
price to learn about the price coefficient. Proposition 3 formalizes this result.

For the monopoly model that we use for this numerical example—which fea-
tures linear demand and constant marginal cost—the approximation provided in 
Proposition 3 is exact and simplifies to ​​α​​ CR​  =  − ​√ 

_____
 var​[q]​ ​ / ​√ 

_____
 var​[p]​ ​​. Calculating 

the implied estimate for each scatterplot, we obtain ​− 0.19​, ​− 0.50​, ​− 0.98​, and ​
− 1.54​, which are close to the respective values of the parameters used to generate 
the data.

Figure B1. Relative Variation in Prices and Quantities with Different Price Parameters

Notes: This figure displays equilibrium prices and quantities with four different values of the price parameter. The 
supports of ​Δξ​ and ​Δη​ are selected so that the supply-side and demand-side variation is balanced and that the equi-
librium price-quantity pairs form a cloud with no apparent slope. The line in each figure indicates the slope obtained 
by OLS regression.
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Appendix C. Supply-Side Misspecification

To illustrate how supply-side misspecification can affect the performance of 
the estimators, we simulate duopoly markets in which the standard assumption 
of Bertrand price competition may not match the data-generating process.36 We 
assume that the demand system is logit, providing consumers with a differentiated 
discrete choice, and we allow them to select an outside option in addition to a prod-
uct from each firm. The quantity demanded of firm ​j​ in market ​t​ is

	​​ q​jt​​  = ​ 
exp​(2 − ​p​jt​​ + Δ​ξ​jt​​)​

  _________________________   
1 + ​∑ k=j,i​ 

 
 ​​  exp​(2 − ​p​kt​​ + Δ​ξ​kt​​)​

 ​​.

On the supply side, marginal costs are ​​c​kt​​  =  Δ​η​kt​​​ (​k  =  j, i​). Firm ​j​ sets price to 
maximize ​​π​j​​ + κ ​π​i​​​, and likewise for firm ​i​, where ​κ  ∈ ​ [0, 1]​​ is a conduct parame-
ter (e.g., Miller and Weinberg 2017). The first-order conditions take the form

	​​ [​
​p​j​​​ ​p​i​​

​]​  = ​ [​
​c​j​​​ ​c​i​​

​]​ − ​​[​(​ 1​  κ​ κ​ 
1
 ​)​ ◦ ​​(​ 

∂ q
 _ ∂ p
 ​)​​​ 

T

​ ]​​​ 

−1

​​[​
​q​j​​​ ​q​i​​

​]​​,

where ​∂ q/∂ p​ is a matrix of demand derivatives and ◦ denotes element-by-element 
multiplication. The model nests Bertrand competition (​κ  =  0​) and joint price-setting 
behavior (​κ  =  1​), as well as capturing (non-microfounded) intermediate cases.

We generate data with different conduct parameters: ​κ  ∈ ​ {0, 0.2, 0.4, 0.6, 0.8,  
1.0}​​. For each specification, we simulate datasets with 400 observations (200 
markets ​×​ 2 firms), and estimate the model under the (erroneous) assumption of 
Bertrand price competition (​κ  =  0​), thus generating supply-side misspecification. 
We then estimate the model using the covariance restriction approach assuming  
​cov​[Δξ, Δη]​  =  0​, using ​Δη​ as an (observed) excluded instrument for demand and 
using ​Δξ​ as an (observed) excluded instrument for supply. Across all specifications, ​
Δξ  ∼  U​(0, 0.5)​​ and ​Δη  ∼  U​(0, 0.5)​​.37

Table  C1 displays the results. As expected, supply-side misspecification can 
introduce bias into the covariance restriction approach. The bias does not appear to 
be meaningful for modest values of ​κ​ (i.e., ​0.6​ or less). When the true nature of con-
duct is ​κ  =  1​ (joint price setting) but we assume Bertrand price competition, the 
bias is ​−​3.8 percent. Likewise, the demand-side instruments (IV-2), which invoke 
the formal assumption about conduct in estimation, perform worse when the true ​
κ​ is farther from the assumed value. The demand-side instruments perform poorly 
when the true conduct is ​κ  =  1​, with a mean bias of over 20 percent. By contrast, 
supply-side instruments do not use a formal assumption about conduct in estimation 
and provide consistent estimates across the specifications (IV-1). Consistent with 
the earlier simulations, the three-stage estimator outperforms IV-1 when conduct is 
correctly specified (​κ  =  0​).

36 Another form of misspecification could arise if prices or quantities are measured with error, in which case the 
demand and cost residuals might be correlated even if the underlying shocks are uncorrelated.

37 We note that these are not mean zero, but it does not matter in this case. It is simply a normalization.
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These results illustrate a key trade-off to the econometrician: if the supply-side 
assumptions are to be maintained, then covariance restrictions can offer better preci-
sion relative to instrument-based approaches. However, supply-side instruments are 
robust to misspecification of firm conduct, whereas covariance restrictions are not.

We note that the covariance restriction approach, which uses both demand-side and 
supply-side variation, is not as susceptible to misspecification bias as demand-side 
instruments in our simulations. The estimator appears to place greater weight on the 
source of variation with more power. In specification (6), the mean coefficient of ​
− 1.038​ is much closer to the supply-shifter mean of ​− 1.002​ than the demand-shifter 
mean of ​− 1.220​. Indeed, it is approximately equal to the IV-1 and IV-2 estimates 
weighted by the square root of the respective ​F​-statistics. By placing greater weight on 
supply-side shocks as the demand-side instruments degrade, the covariance restriction 
approach appears to partially mitigate the bias from model misspecification.
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