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APPENDIX A: DATA

TABLE SI provides information on the prices and revenue shares for major beer brands
based on the six months from January to June 2008. The brands are listed in the order
of their revenue share. Our regression samples include Bud Light, Budweiser, Miche-
lob, Michelob Light, Miller Lite, Miller Genuine Draft, Miller High Life, Coors Light,
Coors, Corona Extra, Corona Extra Light, Heineken, and Heineken Light. These in-
cluded brands account for 68% of all unit sales of SAB Miller, Molson Coors, ABI,
Modelo, and Heineken. The most popular brands that we omit are regional brands (e.g.,
Yuengling Lager and Labatt Blue) or subpremium brands that sell at lower price points
(e.g., Busch Light, Natural Light, Busch, Keystone, Natural Ice). Many of the subpremium
brands are owned by ABI. We also exclude some brands that enter or exit during the sam-
ple period (e.g., Budweiser Select, Bud Light Lime). While brands in this last category
could be incorporated, it would require brand-specific modifications to the demand sys-
tem.

We restrict our attention to 6 packs, 12 packs, and 24/30 packs. These sizes account for
75% of all unit sales among the brands that we consider. Table SI also provides the dis-
tribution of sales volume across these size categories for each brand listed. For example,
11% of Bud Lite is sold as 6 packs, 34% is sold as 12 packs, and 55% is sold as 24/30 packs.
Because these numbers are weighted by volume, it can also be determined that more 12
packs are sold than 24/30 packs (on a unit basis). Domestic beers tend to be sold mostly
as 12 packs and 24 packs, while imports tend to be sold mostly as 6 packs and 12 packs.
This amplifies the average price differences shown because smaller package sizes tend to
be more expensive on a per-volume basis.

We restrict attention to 39 of the 47 geographic regions in the IRI academic database,
dropping a handful of regions in which either few supermarkets are licensed to sell beer
or supermarkets are restricted to selling low-alcohol beer.1 Table SII provides the region-
specific HHI in 2011, as well as the pre-merger predicted change in HHI (�HHI) as of
January to May 2008. There is a fair amount of cross-sectional variation in concentration.

Nathan H. Miller: nathan.miller@georgetown.edu
Matthew C. Weinberg: mcw325@drexel.edu
1The regions included in our sample are Atlanta, Birmingham/Montgomery, Boston, Buffalo/Rochester,

Charlotte, Chicago, Cleveland, Dallas, Des Moines, Detroit, Grand Rapids, Green Bay, Hartford, Hous-
ton, Indianapolis, Knoxville, Los Angeles, Milwaukee, Mississippi, New Orleans, New York, Omaha, Peo-
ria/Springfield, Phoenix, Portland in Oregon, Raleigh/Durham, Richmond/Norfolk, Roanoke, Sacramento,
San Diego, San Francisco, Seattle/Tacoma, South Carolina, Spokane, St. Louis, Syracuse, Toledo, Washing-
ton D.C., and West Texas/New Mexico.
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TABLE SI

AVERAGE PRICES AND REVENUE SHARES: JANUARY TO JUNE 2008a

Fraction of Sales

Brand Price Revenue Share 6 Pack 12 Pack 24/30 Packs

Bud Light 9�45 12�2 10�7 34�0 55�3
Miller Lite 9�42 7�8 8�0 31�1 61�0
Coors Light 9�47 6�0 10�2 33�5 56�3
Budweiser 9�46 5�9 14�4 34�0 60�4
Corona Extra 14�54 5�7 17�7 66�8 15�5
Heineken 14�65 3�3 24�9 70�8 4�3
Busch Light 6�95 3�1 2�1 23�5 74�5
Natural Light 6�48 2�9 5�9 31�5 62�6
Yuengling Lager 9�61 2�7 19�0 60�2 20�8
Corona Light 14�70 2�1 24�4 72�1 3�5
Michelob Ultra 10�91 2�1 24�5 72�5 3�0
Miller High Life 7�23 2�0 7�1 46�8 46�1
Busch 7�00 1�8 3�6 31�9 64�5
Miller Genuine Draft 9�45 1�4 15�5 39�7 44�8
Michelob Light 10�84 1�3 25�8 73�2 1�0
Labatt Blue 9�23 1�3 1�9 35�6 62�5
Keystone Light 6�33 1�2 0�3 19�9 79�8
Blue Moon 14�65 1�1 47�5 52�5 0�0
Budweiser Select 9�47 1�0 12�2 46�7 45�2
Heineken Light 14�87 1�0 24�1 74�1 1�8
Natural Ice 6�45 1�0 6�9 47�1 46�1
Pabst Blue Ribbon 6�99 0�8 3�4 54�2 42�4
Tecate 11�51 0�8 9�3 39�3 51�4
Modelo Especial 14�25 0�7 21�4 76�6 2�1
Coors 9�47 0�6 6�0 39�1 54�5
Bud Light Lime 12�93 0�5 46�8 53�2 0�0

aThis table provides summary statistics on the major beer brands. Price is the ratio of revenue to 144 oz-equivalent unit sales.
Revenue share is the total revenue of the brand divided by total revenue in the beer category. The remaining three columns show the
fraction of revenues derived from six, 12, and 24/30 packs, respectively. The calculations are based on the IRI supermarket data from
January through May 2008.

Of the 39 regions, 23 have post-merger HHIs that are above the threshold of 2,500 that
the Merger Guidelines recognize as delineating “highly concentrated” markets.

McClain (2012) reported that supermarkets account for 20% of off-premise beer sales.
The other major sources of off-premise beer sales are liquor stores (38%), convenience
stores (26%), mass retailers (6%), and drugstores (3%). The IRI Academic Database
includes information on sales in drugstores. In the next appendix section, we show that
retail price patterns in that channel are similar to those in supermarkets. We do not have
data for the other channels.

APPENDIX B: DESCRIPTIVE RETAIL PRICE REGRESSIONS

This section addresses questions that may arise about the descriptive regressions in
Section 3 related to the store-level composition of the IRI data, the impact of promo-
tions, and whether the results extend beyond the supermarket channel. We apply the
differences-in-differences specification shown in equation (1) to store-level data, replac-
ing product×region fixed effects with product×store fixed effects. For brevity, we con-
sider specification with product-specific trends and no other controls. The dependent vari-
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TABLE SII

HHIS AND PREDICTED CHANGES IN HHI BY IRI REGIONa

Region HHI �HHI Region HHI �HHI

Atlanta 2,120 367 Birmingham/Montgomery 2,989 400
Boston 1,925 188 Buffalo/Rochester 1,439 376
Charlotte 2,867 436 Chicago 2,618 484
Cleveland 1,815 400 Dallas 2,860 715
Des Moines 3,171 275 Detroit 2,372 311
Grand Rapids 2,864 311 Green Bay 3,537 448
Hartford 2,717 220 Houston 2,602 295
Indianapolis 3,382 1,022 Knoxville 3,009 371
Los Angeles 1,851 249 Milwaukee 3,718 472
Mississippi 3,647 417 West Texas/New Mexico 2,981 362
New Orleans 2,879 475 New York 1,792 216
Omaha 3,104 318 Peoria/Springfield 3,077 555
Phoenix 2,625 424 Portland, OR 1,551 479
Raleigh/Durham 2,498 265 Richmond/Norfolk 2,599 325
Roanoke 2,929 450 Sacramento 1,672 296
San Diego 1,644 353 San Francisco 1,422 210
Seattle/Tacoma 1,558 370 South Carolina 3,413 368
Spokane 2,528 684 St. Louis 3,694 143
Syracuse 1,641 313 Toledo 3,059 396
Washington DC 1,711 289

aThe table shows the post-merger HHIs calculated as the sum of squared market shares in 2011 and the pre-merger predicted
change in HHIs (�HHI) based on market shares in the first five months of 2008. The market shares are calculated based on each
brewer’s share of total sales in the data. The data are not restricted to the brands/sizes studied in the empirical model and the market
shares do not incorporate the outside good.

ables include the average price, the frequency of promotions, the regular price, and the
promotion price. Promotions are not observed, but we follow Hendel and Nevo (2006)
and define a price as being promotional if it is less than 50% of the highest price in the
preceding month.

Table SIII provides the results. The basic results that we document in Section 3 hold
if store–week data are used rather than region–month data (column 1). There is some
evidence that promotions are less frequent after the merger, although this effect is less
pronounced for MillerCoors and ABI (column 2). The regular and promotional prices
seem to change in similar ways over the sample period (column 3 and 4). Taken together,
the results indicate that the most important effect of the merger is on the overall price
level, rather than on the frequency or magnitude of promotions. Finally, similar average
price results are obtained from the drugstore sector (column 5). This can be seen graphi-
cally in Figure S1. Average prices are more volatile due to relatively thinner sales, but the
same empirical patterns are apparent. Ideally, we would also be able to verify that prices
increased at convenience stores and liquor stores as well, but we were unable to obtain
scanner data for these retailers. However, we would be surprised if wholesale prices in-
creased very differently across retailers within a region, because they are legally required
to buy from the same distributors.

APPENDIX C: NUMERICAL ANALYSIS

We provide two numerical exercises in which we perturb the estimated demand deriva-
tives and examine the implications for estimates of the κ parameter. First, we assess the



4 N. H. MILLER AND M. C. WEINBERG

TABLE SIII

SUPPLEMENTARY DESCRIPTIVE PRICE REGRESSIONSa

Dependent Variable: Average Promotion Regular Promotion Average
Price Indicator Price Price Price

Unit of Geography: Store Store Store Store Region
Periodicity: Weekly Weekly Weekly Weekly Monthly
Sector: Supermarket Supermarket Supermarket Supermarket Drugstores

1{MillerCoors} 0.047 0.013 0.056 0.051 0.042
×1{Post-Merger} (0.004) (0.009) (0.005) (0.005) (0.007)

1{ABI} 0.038 0.019 0.046 0.038 0.042
×1{Post-Merger} (0.005) (0.011) (0.005) (0.004) (0.006)

1{Post-Merger} −0�008 −0�037 −0�017 −0�020 −0�005
(0.003) (0.009) (0.004) (0.004) (0.004)

Observations 15,408,503 15,408,503 12,085,773 3,322,730 100,587

aWe use OLS for estimation. The observations in the first four columns are at the brand–size–store–week–year level. The obser-
vations in the final column are at the brand–size–region–month–year level. All regressions include product (brand×size) fixed effects
interacted with store fixed effects, as well as product-specific linear time trends. Standard errors are clustered at the regional level and
shown in parentheses.

extent to which the estimates of κ could be overstated if the baseline RCNL specification
does too little to relax the independence of irrelevant alternatives property of the logit
demand system. To clarify this potential source of bias, consider that consumer hetero-
geneity likely results in some consumers who prefer domestic beer and others who prefer
imported beer. If this heterogeneity is not fully captured in the demand model, then sub-
stitution between domestic beer and imports would be overstated and substitution among
domestic beers (e.g., between ABI and MillerCoors) would be understated. The supply-
side implication is that the model would then understate the extent to which ABI’s prices
would increase with the Miller/Coors merger in Nash–Bertrand equilibrium. Because the
κ parameter is identified based on whether observed ABI prices increase by more than

FIGURE S1.—Average retail prices of flagship brand 12 packs: drugstores.
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what is predicted in Nash–Bertrand equilibrium, understating consumer heterogeneity in
tastes for imports/exports would thus cause estimates of κ to be too large.

The numerical exercise involves scaling down the estimated demand derivatives be-
tween domestic beers and imports (and vice versa) according to some amount φ ∈ [0�1].
The lost substitution is reassigned to competing brands of the same type. If φ = 1, this
produces markets in which there is zero substitution between domestic beers and imports
and, if φ = 0, then the estimated demand derivatives are unaffected. Regardless of φ,
there is no effect on the diagonal of the demand derivatives matrix, so the own-price
elasticities are unchanged and substitution with the outside good is also unchanged.

To be clear about the mathematics of the exercise, we reestimate the supply side of
the model plugging a scaled derivative matrix ∂̃st

∂pt
= ∂̂st

∂pt
+ �(φ) into equation (12), where

∂̂st
∂pt

is the matrix of estimated derivatives and �(φ) contains the adjustments. Consider
a region–period combination with five products: Bud Light, Coors Light, Miller Lite,
Corona Extra, and Heineken, respectively. Let the elements of the estimated demand
derivative matrix be

∂̂st

∂pt
=

⎡
⎢⎢⎢⎣
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

⎤
⎥⎥⎥⎦ �

where a21 = ∂s2t/∂p1t . The adjustment matrix is given by

�(φ)=

⎡
⎢⎢⎢⎢⎢⎣

0 φ(a42+a52)a12
a12+a32

φ(a43+a53)a13
a13+a23

−φa14 φa15
φ(a41+a51)a21

a21+a31
0 φ(a43+a53)a23

a13+a23
−φa24 −φa25

φ(a41+a51)a31
a21+a31

φ(a42+a52)a32
a12+a32

0 −φa34 −φa35

−φa41 −φa42 −φa43 0 φ(a15 + a25 + a35)
−φa51 −φa52 −φa53 φ(a14 + a24 + a34) 0

⎤
⎥⎥⎥⎥⎥⎦ �

The first column contains adjustments to the share derivatives with respect to the Bud
Light price. The diagonal element is zero, ensuring that the own-price derivative (and
elasticity) is unaffected. The fourth and fifth elements show reduced substitution to
Corona Extra and Heineken. The total lost substitution is φ(a41 + a51) and this is reas-
signed to Coors Light and Miller Lite. Some assumption on the allocation between these
domestic brands is required and we weight by the magnitude of the estimated substitu-
tion. This explains the second and third elements. The other columns are analogous. Each
of the columns sums to zero, so that substitution with the outside good is unaffected.

Table SIV provides the results of the first numerical exercise. We show results generated
with the estimated demand derivatives of RCNL-1 (panel A) and RCNL-3 (panel B)
and φ= 1�00�0�80� � � � �0�20. In each case, the estimate of κ is diminished relative to the
baseline estimates of 0.241 (RCNL-1) and 0.291 (RCNL-3). This is because φ> 0 results
in greater substitution between ABI and MillerCoors and thus a greater price increase for
ABI due to unilateral effects (i.e., in Nash–Bertrand equilibrium). If substitution between
domestic and import brands is completely eliminated (φ = 1�00), the κ estimates are
reduced to 0.176 and 0.206, respectively. Thus, to the extent that the baseline demand
specification does not fully capture consumer heterogeneity in tastes for imports, this
explains at most 36% of the baseline κ estimate.
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TABLE SIV

SUPPLY-SIDE ESTIMATES WITH ADJUSTED DEMAND DERIVATIVES (1)a

φ= 1�00 φ= 0�80 φ= 0�60 φ= 0�40 φ= 0�20

Panel A: RCNL-1 Specification
Post-Merger Internalization 0.176 0.197 0.214 0.231 0.247

of Coalition Pricing (0.024) (0.024) (0.024) (0.024) (0.025)

Panel B: RCNL-3 Specification
Post-Merger Internalization 0.206 0.223 0.239 0.254 0.270

of Coalition Pricing (0.019) (0.019) (0.020) (0.021) (0.022)

aThis table shows the supply-side results obtained with RCNL demand derivative matrices that are adjusted by φ =
1�00�0�80�0�60�0�40�0�20 prior to supply-side estimation. This reallocates substitution between domestic and import brands to substi-
tution among brands of the same type; substitution across types is eliminated if φ = 0. There are 94,656 observations at the brand–
size–region–month–year level. All regressions incorporate a marginal cost function with the baseline marginal cost shifters and fixed
effects. Standard errors are clustered by region and shown in parentheses. The standard errors are not adjusted to account for the
incorporation of demand-side estimates.

In our second exercise, we scale the entire estimated demand derivative matrix by a
single constant, ψ, that we normalize at different levels (ψ = 0�70�0�80� � � � �1�20�1�30).
This approach makes demand less elastic if ψ< 1 and more elastic if ψ> 1. Adapting the
brewer first-order conditions shows that this is equivalent to multiplying brewer markups
by 1/ψ:

pt =mct −
[
Ωt(κ) ◦

(
ψ
∂st(pt;θ)
∂pt

)T]−1

st(pt;θ) (C.1)

=mct − (1/ψ)
[
Ωt(κ) ◦

(
∂st(pt;θ)
∂pt

)T]−1

st(pt;θ)� (C.2)

The numerical adjustment does not affect relative substitution patterns between prod-
ucts (including the outside good). Diversion is unchanged. However, the adjustment does
allow us to investigate how supply-side inferences are affected by the overall demand elas-
ticity. We estimate the supply side with the same methods; the demand derivatives from
column (i) of Table IV are simply adjusted before incorporation into equation (12).

Table SV provides the results of the second exercise based on the derivatives of RCNL-1
(panel A) and RCNL-3 (panel B). We obtain smaller estimates of κ if demand is less elas-
tic (i.e., if brewer markups are larger) and larger estimates of κ if demand is more elastic.
The estimates range from 0.152 and 0.216 (ψ= 0�70) to 0.225 and 0.357 (ψ= 1�30). The
null of post-merger Nash–Bertrand pricing is rejected in each instance. Thus, our main
econometric finding is robust across a range of elasticities centered around the baseline
point estimates. Alternative specifications of demand that result in higher or lower elas-
ticities but which do not affect relative substitution patterns should not be expected to
change the main results.

APPENDIX D: ESTIMATION DETAILS

D.1. Power of the Demand-Side Instruments

In this section, we evaluate the relevance of excluded instruments in the RCNL-1
and RCNL-3 specifications shown in the baseline demand results using the approach of



PRICE EFFECTS OF MILLERCOORS JOINT VENTURE 7

TABLE SV

SUPPLY-SIDE ESTIMATES WITH ADJUSTED DEMAND DERIVATIVES (2)a

ψ= 0�70 ψ= 0�80 ψ= 0�90 ψ= 1�10 ψ= 1�20 ψ= 1�30

Panel A: RCNL-1 Specification
Post-Merger Internalization 0.183 0.211 0.238 0.289 0.313 0.336

of Coalition Pricing (0.022) (0.023) (0.025) (0.027) (0.028) (0.028)

Panel B: RCNL-3 Specification
Post-Merger Internalization 0.212 0.238 0.262 0.309 0.331 0.352

of Coalition Pricing (0.020) (0.021) (0.022) (0.024) (0.025) (0.026)

aThis table shows the supply-side results obtained with RCNL demand derivative matrices that are multiplied/scaled by an amount
ψ = 0�70�0�80� � � � �1�30. This approach dampens or amplifies the magnitude of substitution but maintains the relative substitution
patterns. There are 94,656 observations at the brand–size–region–month–year level. All the regressions incorporate a marginal cost
function with the baseline marginal cost shifters and fixed effects. Standard errors are clustered by region and shown in parentheses.
The standard errors are not adjusted to account for the incorporation of demand-side estimates.

Gandhi and Houde (2016). Our GMM estimates, θ̂, are obtained by minimizing the objec-
tive function ω(θ)′ZA−1Z′ω(θ). It is possible to derive a corresponding Gauss–Newton
regression equation by linearizing the residual function ω(θ) about the true parameter
value θ0, yielding

ωjrt(srt;θ)=
∑
k

(
θk − θ0

k

)∂ωjrt

(
srt;θ0

)
∂θk

+ σj + σt + ξjrt + ejrt
(D.1)

= Jjrt
(
srt;θ0

)
b+ σj + σt + ξjrt + ejrt�

where Jjrt(sjrt;θ0) is a row vector of partial derivatives with kth element ∂ωjrt (srt ;θ0)

∂θk
, b is

a vector with kth element (θk − θ0
k), and ejrt contains higher-order terms in the Taylor

expansion. The Jacobian terms Jjrt(sjrt;θ0) are functions of market shares, which, in turn,
depend upon the structural error term ξjrt . Thus they are not orthogonal to ξjrt . However,
the demand instruments can be used to form moment conditions and, when the residual
functions and Jacobian terms are evaluated at the GMM estimate θ̂, the linear GMM
estimate of equation (D.1) with weight matrix A−1 is b̂= 0.

Tests for weak identification can be constructed by computing standard instrument rel-
evance diagnostics from the first-stage equations corresponding to equation (D.1):

∂ωjrt(srt� θ)

∂θk
= σj + σt +πkzjrt + ujrt�k� (D.2)

In the specific case in which θk is the price coefficient, α, the dependent variable is price
(i.e., ∂ωjrt (θ)

∂α
= pjrt). This can be ascertained from equation (7) and motivates the first-

stage regressions shown in many random coefficient logit applications (e.g., Nevo (2001)).
For the other demand parameters, the dependent variables in these regressions must be
obtained numerically. We use symmetric two-sided finite differences to obtain approxi-
mations (perturbations of 1e-10). Complications arise because the Jacobian is evaluated
at parameter estimates rather than the population parameters, but Wright (2003) showed
that Cragg and Donald (1993) tests based on the rank of the first-stage matrix will be con-
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TABLE SVI

FIRST-STAGE DIAGNOSTICS FOR THE RCNL MODELSa

∂ξ
∂α

∂ξ
∂Π1

∂ξ
∂Π2

∂ξ
∂Π3

∂ξ
∂Π4

∂ξ
∂Π5

∂ξ
∂ρ

Panel A: RCNL-1 (Column (ii) of Table IV)
Robust Partial F-statistic 26.78 253.28 154.95 265.42 – – 21.92
Robust Angrist–Pischke F-statistic 26.78 242.97 126.79 125.69 – – 5.48

Panel B: RCNL-3 (Column (iv) of Table IV)
Robust Partial F-statistic 26.78 – 153.35 166.26 236.78 87.44 20.45
Robust Angrist–Pischke F-statistic 14.31 – 123.74 131.14 240.00 58.47 4.46

aThe F -statistics were calculated while clustering standard errors by city. For the RCNL-1 specification, the p-value for the
Kleibergen–Paap test of the null of under-identification is 0�003 and the Cragg–Donald Wald F -statistic is 327.4. For the RCNL-3
specification, the p-value for the Kleibergen–Paap test of the null of under-identification is 0�009 and the Cragg–Donald Wald F -
statistic is 187.24.

servative, in the sense that they do not reject the null of under-identification frequently
enough.2

Table SVI reports the Cragg–Donald test along with heteroscedasticity-adjusted
Kleibergen–Paap tests, partial F -statistics and the Angrist–Pischke F -statistics that ac-
count for multiple endogenous regressors. The Cragg–Donald statistic is high enough to
reject at the 0.05 level the null hypothesis that the bias in the point estimates is greater
than 10% of the nonlinear least squares bias, following the testing procedure of Stock and
Yogo (2005). Most of the F -statistics well exceed the rule-of-thumb level of 10 commonly
used for linear instrumental variable regressions. The exception is the F -statistic for the
nesting parameter. However, robustness checks indicate that the results are not overly
sensitive to scaling the market sizes or restricting the nesting parameter to specific values
rather than estimating it.

D.2. Computation

Our code is written in Matlab and largely tracks that of Nevo (2000). The main dif-
ferences relate to the contraction mapping. Grigolon and Verboven (2014) showed that
the standard algorithm needs to be slightly adjusted to meet the conditions for a contrac-
tion mapping if the nesting parameter ρ is sufficiently large. We solve for the mean utility
levels, δrt , in region r and period t by iterating over i= 1�2� � � � , as follows:

δi+1
rt = δirt + (1 − ρ) ln(srt)− (1 − ρ) ln

(
srt

(
δirt

))
� (D.3)

The presence of (1 − ρ) slows the speed of convergence. We compute the contraction
mapping in C separately for each region–period combination, using a tolerance of 1e-14.

We took several steps to ensure that the estimator computes a global optimum. First,
we used the Nelder–Mead non-derivative search algorithm, which is believed to be
more robust than derivative-based methods (Goldberg and Hellerstein (2013)). Second,
we passed the optimum computed with the simplex method to a Broyden–Fletcher–
Goldfarb–Shanno search algorithm and verified that the optimum did not change. Third,
we verified that, in each case, the Hessian of the objective function at the optimum is pos-
itive definite and well-conditioned, confirming that we found a local minimum. (It also

2We thank J. F. Houde for bringing this to our attention.
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means that the linear GMM estimate of b in equation (D.1) equals zero.) Further, we
started the RCNL-3 specification using 100 randomly drawn starting values (constrained
within reasonable bounds) to help confirm that the estimation procedure identifies a
global minimum of the objective function.

D.3. Standard Error Adjustment

The supply-side model of price competition is estimated conditional on the demand
parameters obtained from the RCNL model. We correct the supply-side standard errors
to account for the uncertainty in our demand estimates. The correction was sketched out
by Wooldridge (2010), although the specific formulation is tailored to our application.
Let E[g(zjrt� θS0� θD0 )] = 0 denote a vector of supply-side moment conditions, where zjrt is
a vector of instruments for product j in region r at time t, θS0 is a vector of supply-side
parameters, and θD0 is a dimensional vector of demand-side parameters. The first-order
conditions of the supply-side GMM objective function are

0 = [
JθSg

(
zjrt� θ̂S� θ̂D

)]T
C

[
g
(
zjrt� θ̂S� θ̂D

)]
� (D.4)

where C is a weighting matrix for the supply-side moment conditions, g(zjrt� θ̂S� θ̂D) is
the sample analog of the moment orthogonality conditions, matrix of the sample analog
moment conditions with respect to the supply parameters. Taking a mean value expansion
of g(zjrt� θ̂S� θ̂D) around θS0 allows us to rewrite the first-order conditions:

0 = [
JθSg

(
zjrt� θ̂S� θ̂D

)]T
C

[
g
(
zjrt� θ

S
0� θ̂

D
) + JθSg

(
zjrt� θ̄S� θ̂D

)(
θ̂S − θS0

)]
� (D.5)

Solving for θ̂S − θS0 and scaling by the square root of the number of regions R gives the
following expression for

√
R(θ̂S − θS0):

−[[
JθSg

(
zjrt� θ̂S� θ̂D

)]T
C

[
JθSg

(
zjrt� θ̄S� θ̂D

)]]−1[[
JθSg

(
zjrt� θ̂S� θ̂D

)]T
C

]
(D.6)

× √
Rg

(
zjrt� θ

S
0� θ̂

D
)
�

Now take a mean value expansion of g(zjrt� θS0� θ̂D) about θD0 :

g
(
zjrt� θ

S
0� θ̂

D
) = g(zjrt� θS0� θD0 ) + JθDg

(
zjrt� θ

S
0� θ̄

D
)(
θ̂D − θD0

)
� (D.7)

where JθDg(zjrt� θ̂S� θ̄D) is the Jacobian matrix of the sample analog moment conditions
with respect to the demand-side parameters. The term (θ̂D0 − θD0 ) can be rewritten in
terms of the sample analog of the demand-side moment conditions and the Jacobian of
the demand-side moment conditions:(

θ̂D0 − θD0
) = −[[

JθDh
(
zDjrt� θ̂

D
)]T
A

[
JθDh

(
zDjrt� θ̄

D
)]]−1

(D.8)
× [[

JθDh
(
zjrt� θ̂

D
0

)]T ∗A]
h
(
zDjrt� θ̂

D
0

)
�

where h(zDjrt� θ̂D) is the empirical analog of the vector of demand-side moment conditions
andA is an estimate of the variance covariance matrix of the demand-side moment condi-
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tions. Plugging this into equation (D.6) gives a first-order representation for
√
R(θ̂S−θS0):

√
R

(
θ̂S − θS0

)
= [[

JθSg
(
zjrt� θ̂S� θ̂D

)]T
CS

[
JθSg

(
zjrt� θ̄S� θ̂D

)]]−1[[
JθSg

(
zjrt� θ̂S� θ̂D

)]T
C

]
(D.9)

× √
R

(
g
(
zjrt� θ

S
0� θ

D
0

) + JθDg
(
zjrt� θ

S
0� θ̄

D
) ∗ (

θ̂D − θD0
))
�

A consistent estimate of Var(θ̂S) is

[
GTCG

]−1
GTCΩCG

[
GTCG

]−1
� (D.10)

where

G≡ [
JθSg

(
zjrt� θ̂S� θ̂D

)]
�

Ω=
R∑
r=1

(
zS

′
r ωr + FzD′

r ζr
)(
zS

′
r ωr + FzD′

r ζr
)′
�

F = JθDg
(
zjrt� θ̂s� θ̂D

)[[
JθDh

(
zDjrt� θ̂

D
)]T
CD

[
JθDh

(
zDjrt� θ̂

D
)]]−1

× [[
JθDh

(
zjrt� θ̂D

)]T
CD

]
�

The Jacobians of the supply-side moments JθDg(zjrt� θ̂s� θ̂D) and JθSg(zjrt� θ̂s� θ̂D) were
approximated by symmetric two-sided finite differences.

APPENDIX E: RETAIL SECTOR

E.1. Overview

In this appendix, we extend the supply-side model to incorporate a retail sector. The
extension features linear pricing, consistent with industry regulations that prohibit slotting
allowances. Brewers set their prices first; the representative retailer observes these prices
and sets downstream prices accordingly. Double marginalization arises in equilibrium.
The main results regarding brewer competition are largely unaffected. This is because
adding retail markups reduces implied marginal costs by a commensurate amount; the
presence of a retail sector is economically similar to a per-unit tax that brewers must pay.
Thus, inferences about brewer markups are robust but inferences about marginal costs
are not.

E.2. Model and Identification

Retail prices are set by a representative retailer. Let pRt be a vector of retail prices
during period t and let pBt be a vector of brewer prices. We suppress region subscripts for
brevity. The retail price vector can be decomposed into the brewer prices as follows:

pRt = pBt +mcRt + markupRt
(
λ�pBt � θ

D
)
� (E.1)
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where λ is the retail scaling parameter. Brewers set their prices with knowledge of equa-
tion (E.4). The resulting first-order conditions are

pBt =mcBt −
[
Ωt(κ) ◦

(
∂pRt

(
pBt ;mcRt �λ�θD

)
∂pBt

)T(∂st(pRt ;θD)
∂pRt

)T]−1

st
(
pRt ;θd

)
� (E.2)

where mcBt is the vector of brewer marginal costs. Note that brewer markups depend on
the retail pass-through matrix [∂pRt /∂pBt ] because this determines how brewer prices affect
market shares. Plugging back into the retailer pricing equation yields

pRt =mcRt +mcBt + markupRt
(
λ�pBt � θ

D
)

(E.3)

−
[
Ωt(κ) ◦

(
∂pRt

(
pBt ;mcRt �λ�θD

)
∂pBt

)T(∂st(pRt ;θD)
∂pRt

)T]−1

st
(
pRt ;θd

)
�

The marginal cost vectors are not separately identifiable, but a composite marginal cost
function can be specified along the lines of equation (11). If retail markups are invariant
to brewer prices, then this system is similar to the baseline supply-side model, with the
distinction that implied marginal costs incorporate some unidentifiable retail markup.

An alternative approach is to assume that the representative retailer maximizes profit.
The usual derivations show that the vector of product-specific retail markups is given by

markupRt
(
λ�pBt � θ

D
) = λ

[(
∂st

(
pRt ;θD

)
∂pRt

)T]−1

st
(
pRt ;θD

)
� (E.4)

This is a standard multi-product monopoly formulation with the simple tweak that λ ∈
[0�1] scales the retail markups. The retailer sells all products and internalizes the effects
that the retail price of each product has on the sales of other products. For example, the
retailer has both Bud Light and Miller Lite on the shelf and a lower retail price on Bud
Light results in some cannibalization of Miller Lite sales. If λ= 1, then the model corre-
sponds to the representative retailer having monopoly power over each region. If λ= 0,
then the model corresponds to marginal cost pricing; this is observationally equivalent to
the constant markup model. If 0< λ< 1, the model can be interpreted as corresponding
to intermediate levels of retail market power, although the mapping to a fully specified
model of retail oligopoly is unclear. We show how λ affects retail pass-through in the next
subsection.3

E.3. Retail Pass-Through

Before proceeding to the results, we develop the connection between λ and retail pass-
through and show how estimation can be made computationally tractable. It is useful to
rewrite the retail first-order conditions as follows:

f
(
pRt

) ≡ pRt −pBt −mcRt + λ
[(
∂st

(
pRt ;θD

)
∂pRt

)T]−1

st
(
pRt ;θD

) = 0� (E.5)

3If the retail scaling parameter is to be estimated, an additional instrument is required, because retail
markups are affected by unobserved costs. The obvious candidates are demand variables. The Corts critique
applies: Estimates are consistent only if retailers set markups according to equation (E.4). We forgo estimation
and instead restrict λ to different levels.
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TABLE SVII

SUPPLY-SIDE ESTIMATES WITH RETAIL MARKET POWER

(i) (ii) (iii) (iv) (v) (vi)

Post-Merger Internalization κ 0.291 0.292 0.294 0.297 0.300 0.303
of Coalition Pricing (0.047) (0.045) (0.045) (0.046) (0.047) (0.048)

Retail Scaling Parameter λ 0.00 0.025 0.05 0.10 0.15 0.20
Derived Statistics

Marginal Costs < 0 0.00% 0.25% 0.49% 1.56% 4.90% 10.78%

Following Jaffe and Glen Weyl (2013), the retail pass-through matrix equals

∂pRt
∂pBt

= −
(
∂f

(
pRt

)
∂pRt

)−1

� (E.6)

The Jacobian matrix on the right-hand side depends on both the first and second deriva-
tives of demand. Obtaining retail pass-through via numerical integration for each set
of candidate supply parameters is computationally expensive. It is simpler to calculate
∂f (pRt )/∂p

R
t under λ = 1 and then adjust this Jacobian in accordance with the candi-

date λ. To clarify this procedure, we provide a closed-form expression for column n of
the Jacobian:

∂fR
(
pR

)
∂pn

= −

⎡
⎢⎢⎢⎢⎢⎣

0
���
1
0
���

⎤
⎥⎥⎥⎥⎥⎦ + λ

[
∂s

∂pR

T]−1[
∂2s

∂pR ∂pn

T][
∂s

∂pR

T]−1

s− λ
[
∂s

∂pR

T]−1[
∂s

∂pn

T]
� (E.7)

where the value of 1 in the initial vector is in the nth position. In estimation, start with the
Jacobian obtained under λ= 1 and then, for each vector of candidate supply-side param-
eters, (i) subtract the identity matrix from the initial Jacobian, (ii) scale the remainder
by λ, (iii) add back the identity matrix, and (iv) take the opposite inverse to obtain a retail
pass-through matrix that is fully consistent with the candidate parameter vector.

E.4. Results

Table SVII provides the results of supply-side estimation for different normalizations
of the retail scaling parameters. Two main patterns are relevant. First, the estimates of
κ are largely unaffected by the magnitude of the retail scaling parameter. Second, the
number of products for which implied marginal costs are negative increases as the re-
tail scaling parameter increases: Under the baseline specification (λ = 0), there are no
negative marginal costs but, at the highest level shown (λ= 0�20), more than 10% of the
marginal costs are negative. In Table SVIII, we report the average pre-merger markups
and marginal costs that arise under each normalization of λ. We restrict attention to se-
lected brands to conserve space. As shown, retail markups increase monotonically with
λ. With the baseline specification (λ= 0), there are no retail markups but, at the highest
level shown (λ= 0�20), the average retail markup is $4.04. Brewer markups change little
over different levels of λ, but the implied composite marginal costs decrease nearly one
for one as retail markups increase.
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TABLE SVIII

MARKUPS AND MARGINAL COSTS WITH RETAIL MARKET POWER

λ= 0�00 λ= 0�025 λ= 0�05 λ= 0�10 λ= 0�15 λ= 0�20

Average Markups
Retail 0.00 0.51 1.01 2.02 3.03 4.04
Bud Light 3.85 3.86 3.87 3.89 3.90 3.91
Coors Light 2.63 2.61 2.58 2.53 2.48 2.43
Miller Lite 3.02 3.01 2.98 2.94 2.90 2.85

Average Composite Marginal Costs
Bud Light 5.88 5.37 4.86 3.84 2.83 1.82
Coors Light 7.10 6.62 6.15 5.20 4.25 3.30
Miller Lite 6.66 6.18 5.70 4.74 3.78 2.82
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