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1 Introduction

Econometric models that require the computation of equilibria within an estimation rou-

tine recently have been introduced in industrial organization. Goettler and Gordon (2011)

estimate a dynamic innovation game played between Intel and AMD, and Miller and Os-

borne (2013) estimate a static game of spatial price discrimination in the cement industry

exploiting variation in aggregated endogenous data. Both papers put an inner loop, outer

loop structure on estimation. In the inner loop, equilibrium objects such as price or quantity

are computed using numerical methods, conditional on a candidate parameter vector, and

aggregated to the level of the data. In the outer loop, an optimization algorithm selects

the parameter vector that brings the predicted moments closest to the observed moments.

The methodology is promising because it relaxes the data requirements of estimation and

extends the reach of researchers engaged in structural modeling.

We derive conditions on the equations defining the equilibrium objects that guarantee

consistent and asymptotically normal estimates. Standard asymptotics require that the

objective function (i) be differentiable at the true parameter value for almost all values

of the exogenous variables, and (ii) satisfy a Lipschitz condition in a neighborhood of the

true parameter value. While these conditions can be verified if analytical solutions to the

equilibrium objects are available (e.g., Thomadsen (2005)), more often such solutions are

unavailable and the objects are defined implicitly as solutions to first order conditions.

We first show the equilibrium objects are continuous in the parameters and exogenous

variables if a unique equilibrium exists and if the first order conditions are continuous. We

then derive two additional conditions that together guarantee consistency and asymptotic

normality. First, if the Jacobian of the first order conditions is singular at some vector of

exogenous variables, X0, then a perturbation to that X0 yields nonsingularity. Second, when

the partial derivatives of the equilibrium objects exist they are bounded by a measurable

function. Of course, if the first order conditions are always nonsingular, the Implicit Func-

tion Theorem (IFT) along with boundedness guarantees asymptotic normality. However,

continuity and differentiability of the first order conditions do not guarantee one can apply

the IFT. Our conditions thus are weaker than simply assuming the IFT can be used.

2 Model and Estimator

We consider a market that equilibrates in each of t = 1, . . . , T periods given an exogenous

matrix of data X t and a parameter vector θ0. Each firm i chooses a strategy vector σit
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in each period. We assume that each combination of strategy vectors σt = (σ1t,σ2t, . . . )

produces different equilibrium outcomes. Let the derivative of firm i’s profit function with

respect to its strategy vector be f it(σit;σ−it,X t,θ0). The stacked first order conditions that

characterize equilibrium in period t then are given by

f t(σt;X t,θ0) = 0. (1)

We assume that the underlying demand and marginal cost functions are continuous and

differentiable in the strategy and parameter vectors, which holds for most standard empirical

models. It follows that f t(σ·t;X t,θ0) also has those properties.

Suppose the econometrician observes aggregated equilibrium data such as average

prices or total revenue, as well as the exogenous data. Define a continuously differentiable

function S : RN → RL that maps strategies into aggregated equilibrium data, where N is

the length of stacked strategy vectors and L is the number of aggregated equilibrium data

points observed. The data generating process is

Y t(X t,θ0) = S(σ∗t (X t,θ0)) + ωt, (2)

where σ∗t (X t,θ0) is the equilibrium strategy vector and ωt is unobserved measurement error.

We assume that the econometrician knows S and can compute the strategy vector

σ∗t (θ;X t) that solves equation (1) for any given candidate parameter vector θ. Thus, the

econometrician can calculate aggregate equilibrium predictions according to Ỹ t(θ;X t) =

S(σ∗t (θ;X t)). This lends itself to the following minimum distance estimator:

θ̂ = arg min
θ∈Θ

1

T

T∑
t=1

[Y t(X t,θ0)− Ỹ t(θ;X t)]
′C−1T [Y t(X t,θ0)− Ỹ t(θ;X t)], (3)

where Θ is some compact parameter space and CT is a positive definite matrix. The

estimator is analogous to nonlinear least squares, in which each element of [Y t(X t, θ0) −
Ỹ t(θ;X t)] summarizes a nonlinear equation and CT weights across equations. Because

the aggregated equilibrium predictions are functions of the implicit solution to first-order

conditions, additional conditions must be put on the equations that define the equilibrium

objects in order for the standard proofs of consistency and asymptotic normality to apply.
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3 Asymptotic Properties of the Estimator

It is useful to write the objective function as

1

T

T∑
t=1

m(θ,Y t,X t) ≡
1

T

T∑
t=1

(Y t(X t,θ0)− S(σ∗t (θ;X t)))
′W t(Y t(X t,θ0)− S(σ∗t (θ;X t))),

(4)

where W t ≡ C−1t . We assume that W = limt→∞W t exists and is positive definite, and

that at least one element of X t is continuous. We denote the distribution and support of

X t as Fx and U , respectively, and denote the distribution of ω as Fω.

Assumption A1 (Global Identification): The parameter vector θ0 is globally identified

in Θ. Formally, E[Y t(X t,θ0)− S(σ∗t (θ;X t))|X t] = 0↔ θ = θ0.

Assumption A2 (Existence and Uniqueness): For any θ ∈ Θ and X ∈ U there exists a

vector σ1 such that f(σ1;Ψ,θ) = 0. Further, f(σ1;X t,θ) = f(σ2;X t,θ) = 0↔ σ1 = σ2.

Identification assumptions such as A1 are standard in empirical industrial organization

because the conditions for identification in nonlinear models are difficult to formulate and

verify theoretically. With partially observed outcomes, A1 could be violated if aggregation

is sufficiently coarse. When the properties of the model do not yield A1 and A2 theoretically

then the assumptions can be evaluated numerically as in Miller and Osborne (2011).

Lemma 1 (Continuity): Under A2, the mapping σ∗(θ,X) is continuous in θ and X.

The corollary that S(σ∗(θ,X)) is continuous in θ and X follows from the properties of

the aggregating function S(·). Next, since the Jacobian matrix of the first-order conditions

need not be nonsingular over all θ ∈ Θ, we cannot rely on the IFT to guarantee that

σ∗(θ0,X) is continuously differentiable in a neighborhood of (θ,X). We proceed with the

weaker requirement that the first order conditions are well-behaved, in the sense that if the

Jacobian is singular at (θ0,X0) then a perturbation to X0 + ε yields nonsingularity:

Assumption A3: Denote the Jacobian matrix of the first order condition f with respect to

σ, at (θ,X), as Jfσ(σ,θ,X). Consider the true parameter value θ0 and the set of points

B(θ0) = {X : Jfσ(σ∗(θ0,X),θ0,X) is singular}.

For each point X0 in B(θ0), there exists a neighborhood N(X0,θ0) around X0 such that the

Jacobian matrix Jfσ(σ∗(θ0,X),θ0,X) is nonsingular for all X ∈ N(X0,θ0) and X 6= X0.
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Under A3, if the differentiability of σ∗(θ0,X0) in θ fails then the IFT guarantees

continuous differentiability at the new equilibrium strategy σ∗(θ0,X0+ε). Provided that one

can apply the IFT in an open ball around X0, and at least one element in X is continuously

distributed, the set of points at which the IFT fails occurs with zero probability.

Lemma 2 (Differentiability): Under A2-A3, S(σ∗(θ,X)) is differentiable in θ at θ = θ0

for almost all X in U .1

Finally, consistency and asymptotic normality require the objective function to satisfy

a Lipschitz condition. The condition holds provided that partial derivatives of σ∗(θ0,X)

almost always exist and can be bounded (when they exist):

Assumption A4: The partial derivatives of σ∗(θ0,X) are bounded by a measurable function

M(X) at all points X ∈ U for which Jfσ(σ∗(θ0,X),θ0,X) is nonsingular. Further, for

any point (θ0,X0) at which Jfσ(σ∗(θ0,X0),θ0,X0) is singular, there exists a neighborhood

B(θ0) in θ-space in which either:

(i) For all θ ∈ B(θ0),θ 6= θ0, the partial derivatives of σ∗(θ,X0) with respect to the

elements of θ exist and are bounded by a measurable function M(X).

(ii) For all θ ∈ B(θ0), the partial derivatives of σ∗(θ,X) with respect to the elements of

θ exist in a neighborhood of X around X0, with X 6= X0. These partial derivatives

are bounded by a measurable function M(X) ≤M <∞.

Lemma 3 (Lipschitz Continuity of m in θ-space): Under A2-A4, there is a measurable

function ṁ(Y ,X) such that |m(θ1,Y ,X) −m(θ2,Y ,X)| ≤ ṁ(Y ,X)‖θ1 − θ2‖ for every

θ1 and θ2 in some open neighborhood of θ0

Proposition 1 (Consistency and Asymptotic Normality): Under A1-A5 and certain

regularity conditions enumerated in the proof,

(i) plim θ̂ = θ0

(ii)
√
T (θ̂ − θ0)→d N

(
0,V −1θ0

[ ∫
U

∫
ω
∇m(θ,Y ,X)∇m(θ,Y ,X)′Fx(X)Fω(ω)

]
V −1θ0

)
where V θ0 is a symmetric matrix that contains the second derivatives of m(θ,Y ,X) with

respect to θ, evaluated at θ0.

1The modifier “almost all” means that the set of X points for which differentiability fails occurs with
measure zero, under the probability measure generated by the probability distribution of X.
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Under Proposition 1, if the parameters are identified globally (A1) and equilibrium is

unique (A2) then consistency and asymptotic normality in estimation are guaranteed under

weaker conditions than previously recognized. While often it is difficult to verify A1 and

A2 theoretically, numerical methods can provide some evidence. Miller and Osborne (2011)

support global identification by simulating artificial data from the model using known pa-

rameters, aggregating such that the artificial data resemble the market data, and confirming

that estimation based on the artificial data recovers the known parameters. It is precisely

when A1 and A2 can be verified theoretically or supported numerically that Proposition 1

has the greatest value.

4 Proofs

Proof of Lemma 1: The proof is by contradiction. We note that by assumption f is

continuous for all θ ∈ Θ and all σ in RN . We suppress X for notational simplicity. The

arguments we apply to θ apply to X as well. Suppose that σ∗(θ) is not continuous at

θ1 ∈ Θ. Then there exists an ε > 0 such that for all δ > 0 there exists a θ2 such that

0 < ‖θ2 − θ1‖ < δ and ‖σ∗(θ2)− σ∗(θ1)‖ ≥ ε. (5)

Uniqueness of the equilibrium price σ∗ implies that if ‖σ∗(θ2)− σ∗(θ1)‖ ≥ ε > 0, then

‖f(σ∗(θ2),θ1)‖ > b > 0.2 (6)

Continuity of f in θ implies that for all ε̃ there exists a δ̃ > 0 such that if 0 < ‖θ−θ1‖ < δ̃ ,

‖f(σ∗(θ),θ)− f(σ∗(θ),θ1)‖ = ‖f(σ∗(θ),θ1)‖ < ε̃. (7)

A contradiction immediately follows from this if we choose ε̃ = b. Our initial assertion would

imply that for δ̃(b) we could find a θ2(δ̃(b)) where

0 < ‖θ2 − θ1‖ < δ̃ and ‖f(σ∗(θ2),θ1)‖ ≥ b = ε̃. (8)

Proof of Lemma 2: It is sufficient to show that the equilibrium strategy function

σ∗(θ0,X) is almost everywhere differentiable in θ0. A3 guarantees that for every X0 in

2This is because ‖σ∗(θ) − σ∗(θ1)‖ > ε implies that σ∗(θ) 6= σ∗(θ1). Our definition of σ∗ and the
assumption of a unique equilibrium implies f(σ,θ1) = 0 at σ∗(θ1), and nowhere else.
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B(θ0), there is an X-neighborhood around X0 where the Jacobian of f with respect to σ

is nonsingular. The IFT guarantees that σ∗(θ0,X) is continuously differentiable for the X

points in this neighborhood. Because each point of possible nondifferentiability X0 is sur-

rounded by an open neighborhood of differentiable points, and at least one element ofX0 has

a continuous distribution, under the probability measure for X points of nondifferentiability

occur with measure zero.

Proof of Lemma 3: First, consider the points (θ0,X) at which the Jacobian of f

with respect to σ is nonsingular. At these points, the IFT guarantees that the implicit

solution σ∗(θ0,X) is continuously differentiable in a θ-neighborhood around θ0 because f

is continuously differentiable in θ. It follows that the partial derivatives of σ∗(θ0,X) with

respect to θ exist in this neighborhood, and A4 guarantees that the partial derivatives are

bounded by M(X). Now we turn to m(θ,Y t,X t). Since the W t has a finite limit, each of

its elements wij,t can be bounded by wij.
3 Define

mij,t(θ,Y t,X t) = (Yit − Si(σ∗(θ,X t))wij,t(Yjt − Sj(σ∗(θ,X t)),

noting thatm(θ,Y t,X t) =
∑

i,jmij,t(θ,Y t,X t). Consider the partial derivative ofmij,t(θ,Y t,X t)

with respect to some θk. We know that

∂mij,t(θ,Y t,X t)

∂θk
= −wij,t(Yjt − Sj(σ∗(θ,X t))) ·[∑

n,l

∂Si(σ
∗(θ,X t))

∂σnl

∂σ∗nl(θ,X t)

∂θk
+
∂Si(σ

∗(θ,X t))

∂θk

]
−wij,t(Yit − Si(σ∗(θ,X t))) ·[∑
n,l

∂Sj(σ
∗(θ,X t))

∂pnl

∂σ∗nl(θ,X t)

∂θk
+
∂Sj(σ

∗(θ,X t))

∂θk

]
.

Our assumption that S is continuously differentiable in its arguments means that there is

some θ neighborhood around θ0 where S(σ,θ,X t) and the partial derivatives of S(σ,θ,X t)

with respect to the elements of θ are bounded. Moreover, because σ∗ is continuous in its

arguments, it is also bounded in some neighborhood of θ0. This means that S(σ∗(θ,X t))

and its partial derivatives with respect to both θ and σ can be bounded in a neighborhood

3By the definition of the limit, for all ε there is some T for which | limt→∞ wij,t − wij,t| < ε for t > T .
So for all t > T , wij,t can be bounded. maxt≤T {wij,t} must also exist and be finite, since there are finitely
many wij,t’s prior to T . We have implicitly assumed that all the elements of W t are finite; violations would
make numerical maximization of the objective function impossible for some values of t.
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of θ0. We denote the lower bound on S as S and the upper bound on the partial derivatives

as S
′
. Recalling that A4 guarantees that all the partial derivatives of σ∗ with respect to θk

are bounded by |M(X t)|, through repeated applications of the triangle inequality we can

put a bound on
∂mij,t(θ,Y t,Xt)

∂θk
:

∣∣∣∣∂mij,t(θ,Y t,X t)

∂θk

∣∣∣∣ ≤ ∣∣∣wijS ′∣∣∣(∑
n,l

|M(X t)|+ 1

)
(|yit − S|+ |yjt − S|)

= ṁij(Y t,X t).

Recalling that θ is K dimensional, we can write:

m(θ1,Y t,X t)−m(θ2,Y t,X t) =
K∑
k=1

m(θ11, ..., θ1k, θ2,k+1, ..., θ̃2K ,Y t,X t)

−m(θ11, ...θ1,k−1, θ2k, ..., θ2K ,Y t,X t)

=
K∑
k=1

∂m(θ̃k,Y t,X t)

∂θk
(θ1k − θ2k).

The second step follows from the Mean Value Theorem (MVT) for θ̃k = (θ11, ...θ1,k−1, γ, θ2,k+1, ..., θ2K),

where γ is between θ1k and θ2k. It follows that:

|m(θ1,Y t,X t)−m(θ2,Y t,X t)| ≤
K∑
k=1

∣∣∣∣∣∂m(θ̃k,Y t,X t)

∂θk

∣∣∣∣∣ |θ1k − θ2k|
≤

K∑
k=1

∣∣∣∣∣∂m(θ̃k,Y t,X t)

∂θk

∣∣∣∣∣ ‖θ1 − θ2‖
≤ K max

i,j
{ṁij(Y t,X t)}‖θ1 − θ2‖.

Hence, ṁ(Y t,X t) = K max{ṁij(Y t,X t)} and Lemma 3 holds for the points (θ0,X) at

which the Jacobian of f with respect to σ is nonsingular.

Second, we prove the lemma at points of nondifferentiability, i.e., points (θ0,X) at

which the Jacobian of f with respect to σ is singular. We first consider Case (ii) of A4 and

then return to Case (i). For any X 6= X0, we can argue that∣∣∣∣∂m(θ,Y t,X t)

∂θk

∣∣∣∣ ≤ ∣∣∣wijS ′∣∣∣ (N |M |+ 1)
(∣∣yit − S∣∣+

∣∣yjt − S∣∣) .
This follows from arguments similar to those presented above. A4 (Case (ii)) guarantees
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that the partial derivatives of σ∗ are bounded by a constant M . Additionally, since S(·) is

continuously differentiable, and since σ∗ is continuous in our X-neighborhood of X0, S(·)
and its derivative are bounded by S and S

′
, respectively.4 This implies that the upper bound

{ṁij(Y t,X t)} is not a function of X. It follows that:

|m(θ1,Y t,X t)−m(θ2,Y t,X t)| ≤ K max
i,j
{ṁij(Y t)}‖θ1 − θ2‖.

Taking limits of both sides of this inequality, we see that

lim
X→X0

|m(θ1,Y t,X t)−m(θ2,Y t,X t)| = |m(θ1,Y t,X0)−m(θ2,Y t,X0)|

≤ K max
i,j
{ṁij(Y t)}‖θ1 − θ2‖.

The first line is due to continuity of σ∗ and S(·). The last line is where the requirement

that M(X t) not be a function of X t binds. To finish, we turn to Case (i) of A4. We

fix X at X0, and again consider applying the mean value theorem to each component of

m(θ1,Y t,X t)−m(θ2,Y t,X t). Consider some component

m(θ11, ..., θ1k, θ2,k+1, ..., θ̃2K ,Y t,X t)−m(θ11, ...θ1,k−1, θ2k, ..., θ2K ,Y t,X t).

There are two possibilities to consider. First, suppose that the vector (θ11, ...θ1,k−1) is

different from (θ01, ...θ0,k−1) in at least one element, or (θ2,k+1, ..., θ2K) is different from

(θ0,k+1, ..., θ0K) in at least one element. In this case, the vector θ̃k = (θ11, ...θ1,k−1, γ, θ2,k+1, ..., θ2K)

can never be equal to θ0. A4 guarantees that the partial derivatives of σ∗, and hence m,

exist for all possible θ̃k so we can apply the single variable MVT as above. The second pos-

sibility is that (θ11, ...θ1,k−1) equals (θ01, ...θ0,k−1) and (θ2,k+1, ..., θ2K) equals (θ0,k+1, ..., θ0K).

If θ1k = θ2k = θ0k then the difference above is simply zero. If not, we can prove the following

inequality:

|m(θ11,...,θ1k,θ2,k+1,...,θ̃2K ,Y t,Xt)−m(θ11,...θ1,k−1,θ2k,...,θ2K ,Y t,Xt)|
|θ1k−θ2k|

≤

max
{∣∣∣∂m(θ̃1k,Y t,Xt)

∂θk

∣∣∣ , ∣∣∣∂m(θ̃2k,Y t,Xt)
∂θk

∣∣∣} .
To prove this, define g(γ) = m(θ11, ..., γ, θ2,k+1, ..., θ̃2K ,Y t,X t). Assuming without loss of

generality that θ1k < θ2k, from A4 we know that g(γ) is differentiable on the open intervals

4If theX neighborhood is large enough that they are not bounded, we can simply shrink the neighborhood
until they are.
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(θ1k, θ0k) and (θ0k, θ2k) and it is continuous on the interval [θ1k, θ2k] due to continuity of S

and σ∗. Hence we can apply the MVT on the interval (θ1k, θ0k) and (θ0k, θ2k) to show that

|g(θ0k)− g(θ1k)|
|θ0k − θ1k|

≤

∣∣∣∣∣∂m(θ̃1k,Y t,X t)

∂θk

∣∣∣∣∣ , and
|g(θ2k)− g(θ0k)|
|θ2k − θ0k|

≤

∣∣∣∣∣∂m(θ̃2k,Y t,X t)

∂θk

∣∣∣∣∣ ,
for some θ̃1k ∈ (θ1k, θ0k) and θ̃2k ∈ (θ0k, θ2k). We next show that

|g(θ2k)− g(θ1k)|
|θ2k − θ1k|

≤ max

{
|g(θ0k)− g(θ1k)|
|θ0k − θ1k|

,
|g(θ2k)− g(θ0k)|
|θ2k − θ0k|

}
.

To show this inequality, we first make the following definitions:

m1 =
g(θ2k)− g(θ1k)

θ2k − θ1k
, m2 =

g(θ0k)− g(θ1k)

θ0k − θ1k
, m3 =

g(θ2k)− g(θ0k)

θ2k − θ0k
.

Then define three lines on the interval [θ1k, θ2k]:

L1(θ) = m1θ + b1, L2(θ) = m2θ + b2, L3(θ) = m3θ + b3, (9)

where we define

b1 = g(θ1)−m1θ1, b2 = g(θ1)−m2θ1, and b3 = g(θ2)−m3θ2. (10)

Because of the way we have defined these lines, and because of the continuity of g, it must

be the case that L2(θ0) = L3(θ0), L1(θ1) = L2(θ1), and L1(θ2) = L3(θ2). Let us suppose

by way of contradiction that |m1| > max{|m2|, |m3|}. There are a number of cases that we

have to consider. First, suppose that m1, m2, and m3 are all positive. Then it must be the

case that for θ > θ1, L1(θ) > L2(θ) since L1(θ1) = L2(θ1) and L1 has a steeper slope than

L2. It must also be the case that for θ < θ2, L1(θ) < L3(θ) since L1 is more steep than

L3 and L1(θ2) = L3(θ2). Since θ1 < θ0 < θ2, this implies that L3(θ0) > L1(θ0) > L2(θ0).

This contradicts L2(θ0) = L3(θ0). Next suppose that m1 > 0, m2 < 0, and m3 > 0. It is

easy to show that it must be the case that L2(θ0) < L1(θ0) (because L2 slopes down from

θ1, while L1 slopes upward), and L3(θ0) > L1(θ0) (by the assumption that m1 > m3), again

leading to a contradiction. Then suppose that m1 > 0, m2 > 0 and m3 < 0. The assumption

that m1 > m2 implies that L2(θ0) < L1(θ0). Since we assumed that m3 is negative, L3

slopes up from θ < θ2 and L1 slopes down, implying that L3(θ0) > L1(θ0). This again is a

contradiction of L2(θ0) = L3(θ0). The cases where m1 < 0 can be shown with similar logic.
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The fact that |m1| ≤ max{|m2|, |m3|} implies that

|g(θ1k)− g(θ2k)|
|θ1k − θ2k|

≤ max

{∣∣∣∣∣∂m(θ̃1k,Y t,X t)

∂θk

∣∣∣∣∣ ,
∣∣∣∣∣∂m(θ̃2k,Y t,X t)

∂θk

∣∣∣∣∣
}
.

Similar logic to what was used to prove the last two cases can be used to show

|m(θ1,Y t,X t)−m(θ2,Y t,X t)| ≤ K max
i,j
{ṁij(Y t,X t)}‖θ1 − θ2‖.

Proof of Proposition 1: With Lemmas 1-3 in hand, the proof of Proposition 1 follows

directly from Theorem 5.23 in van der Vaart (1998), pages. 53-54. Two additional normalcy

conditions are required:

(i) EωEXṁ(Y ,X)2 <∞.

(ii) The mapping θ → Pm(θ) admits a second-order Taylor expansion at θ0 such that

θ → Pm(θ) =

∫
U

[
(S(σ∗(θ0,X))− S(σ∗(θ,X))′ ·

W (S(σ∗(θ0,X t))− S(σ∗(θ,X)))]Fx(X) + Eω′Wω.
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