
Rising Markups, Rising Prices?

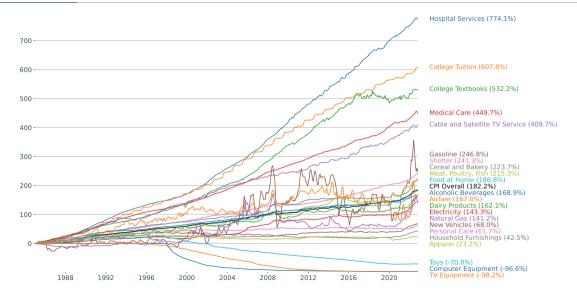
Christopher Conlon, Nathan H. Miller, Tsolmon Otgon and Yi Yao

AEA 2023

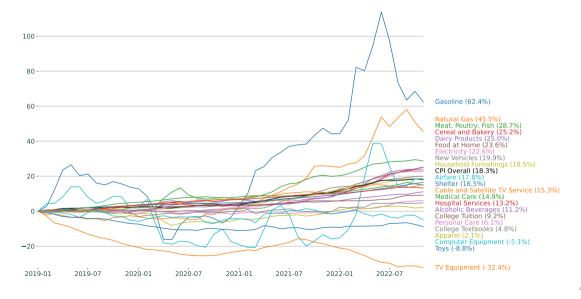
NYU Stern and NBER; Georgetown University (x3).

Extending a Famous Plot

What did we do?


(2022).

- ► Restricted to COMPUSTAT data (US listed public firms).


 Couldn't get Census in time.
- ► For very recent data, will rely on quarterly data.
- ► Later will restrict to set of firms we can match to PPI by NAICS/SIC. (tougher than it looks!)
- ► Recent rise: Finance/Insurance (2021) and Manufacturing

2

Consumer Prices since 1985

Consumer Prices since 2019: tell a different story...

Today's Question

- ► Are these two sets of plots related?
- ► For either time horizon?
 - The DLEU period (1980-2018)
 - The current inflationary episode (2019-2022)
- \blacktriangleright At best we're going to look for an association between changes in μ and P.
- ► The lurking policy/political question: are recent increases inflation caused by increasing markups → this isn't evidence either way!

But first, let's step back...

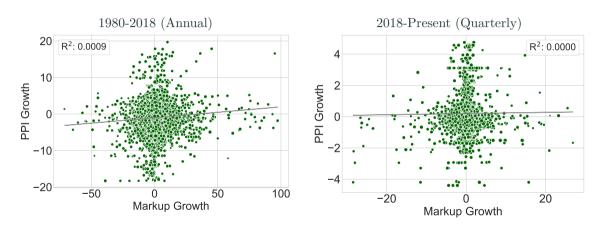
Review: Where do markups come from?

In an ideal world we would observe $\mu = \frac{p}{mc}$.

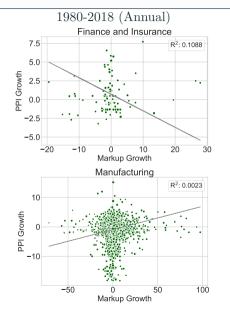
- ► In 10-K's and accounting statements we observe neither, but we do see Revenue and Cost of Goods Sold (mostly variable cost?) and Selling, General, and Administrative Expenses (maybe fixed costs?)
- ▶ Building on a long literature: Hall (1988, 2018), De Loecker Warzynski (2012), De Loecker Eeckhout Unger (2020) use cost minimization to try and map observable accounting data onto firm-level markups:

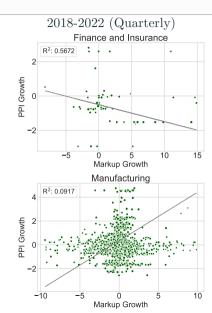
$$\mu_{it} \equiv \frac{P_{it}}{MC_{it}} = \theta_{it}^{v} \frac{P_{it}Q_{it}}{P_{it}^{v}V_{it}} \approx \theta_{it}^{v} \frac{\text{Revenue}_{it}}{\text{COGS}_{it}}$$

The key parameter θ_{it}^v is the output elasticity, which can be estimated from the production function (separately for industry and year).

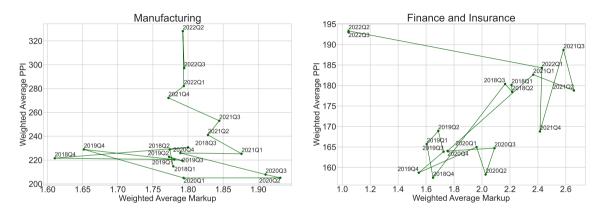

Syverson (JEP 2019)

Points out an obvious identity $p \equiv \mu \cdot MC$ and the implication that:


$$\underbrace{ \begin{array}{c} \text{Growth in P} \\ \text{We get from PPI} \end{array}}_{\text{We get from PPI}} \approx \underbrace{ \begin{array}{c} \text{Growth in } \mu \\ \text{Estimate like DLEU} \end{array}}_{\text{Estimate like DLEU}} + \text{Growth in MC}$$


- ightharpoonup We can get changes in P from matching the PPI to NAICS/SIC code for each firm in COMPUSTAT.
 - This is both time consuming and imperfect
 - Many firms unmatched (we don't see PPI for every NAICS).
 - Many firms have multiple codes, etc.
- ► Markups are estimated with all the same caveats as usual.

All Firms: Markup Growth/ PPI Growth (Geometric Average)


By 2 digit Industry (Geometric Average)

Panel A: 1980)-2018					
Industry	\hat{eta}	SE	\mathbb{R}^2	Obs	% Coverage	
All sectors	0.05	0.02	0.00	6277	51	Turn and goattomlet
All sectors (with Category Fixed Effects)	0.02	0.01	0.00	6277	51	Turn each scatterplot
Accommodation and Food Services	-0.01	0.04	0.00	44	19	into a separate regression
Finance and Insurance	-0.26	0.06	0.16	92	58	
Health Care and Social Assistance	-0.12	0.07	0.05	62	20	Only Manufacturing
Information	-0.08	0.02	0.02	463	43	looks positive and
Manufacturing	0.00	0.03	0.00	4523	70	1
Mining, Quarrying, and Oil and Gas Extraction	0.11	0.02	0.04	782	69	significant
Professional, Scientific, and Technical Services	0.02	0.04	0.01	54	10	Finance has largest
Real Estate and Rental and Leasing	0.02	0.05	0.00	123	48	r mance has largest
Retail Trade	0.09	0.29	0.00	47	4	increase in markups in
Utilities	-0.33	0.12	0.20	31	37	2021 (but negative in
Panel B: 2018Q	l-2022Q	3				
Industry	\hat{eta}	SE	\mathbb{R}^2	Obs	% Coverage	2022).
All sectors	0.08	0.02	0.01	2610	59	
All sectors (with Category Fixed Effects)	0.13	0.02	0.02	2610	59	
Finance and Insurance	-0.10	0.01	0.50	57	77	
Information	-0.02	0.01	0.03	397	72	
Manufacturing	0.46	0.03	0.10	1665	86	
Mining, Quarrying, and Oil and Gas Extraction	0.11	0.06	0.01	250	73	

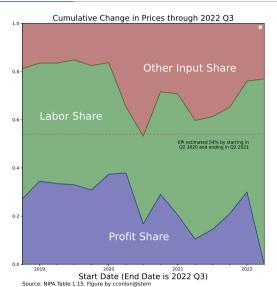
Evolution of Industry Averages: "Phillips Curve"

Prices lag markups quite a bit in manufacturing Finance/Insurance has a great 2021 and terrible 2022 (like my 401(k))

Where does this leave us?

Back to Syverson (2019)

$$\mu \equiv \frac{P}{MC} = \frac{P}{AC} \cdot \underbrace{\frac{AC}{MC}}_{\text{Scale Elasticity?}}$$

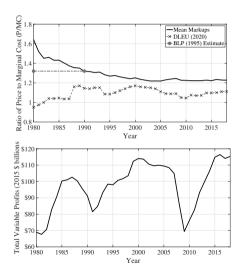

- ► If markups don't explain price changes, surely it is all costs?
- ▶ COGS is already in the markup: $\mu_{it} \approx \theta_{it}^{v} \frac{\text{Revenue}_{it}}{\text{COGS}_{it}}$ (mechanical negative correlation).
- ightharpoonup COGS is something like TVC(Q) and conflates unit costs and output.
- ► Maybe scale is messing things up?

Can we get unitized costs?

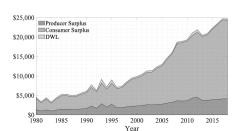
- ► We can get them from NIPA tables (but how are they constructed?)
- ► Another accounting identity:

$$\Delta p_t = \Delta \text{other inputs}_t + \Delta \text{wage bill}_t + \Delta \text{profits}_t$$

- ► A much quoted EPI study started in 2020Q2 (during lockdown) and ended in 2021 to claim rising profits caused 54% of inflation.
- ► Extending to today, hard to estimate profit share $> \frac{1}{3}$.

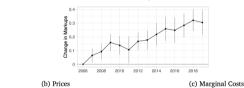


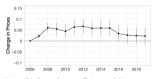
What have single industry


studies taught us about

markups/scale?

Griego, Murry, Yurukoglou (2021): Automobiles


- ► Costs rise faster than prices → Markups decline
- ► Quality is improving rapidly → most of the gains are captured by consumers.
- ► (Total) Variable Profits rise with output.
- ► Why? Competition from abroad + Durability.



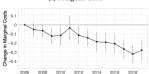

Döpper, MacKay, Miller, Stiebale (2022) / Brand (2021): Supermarkets

Figure 5: Product-Level Changes in Markups, Prices, and Marginal Costs

(a) Markups

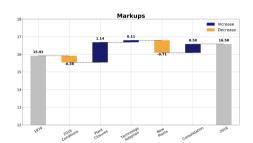
Notes: This figure shows coefficients and 95 percent confidence intervals of a regressions of the log of the Lerner index, real prices, and real marginal costs at the product-chain-DMA-quarter-year level on year dummies controlling for product-chain-DMA and quarter fixed effects. The year 2006 is the base category.

- ▶ Prices rise slowly, and marginal costs decline slowly → Markups up.
 - Demand becomes less elastic over time.
 - $\frac{p-mc}{p} \propto \frac{1}{\varepsilon}$ is growing over time.
- Output and CS are rising (especially at top)
- ► Why? Maybe niche consumption and variety (especially for higher income households)
 - Organic Fruit in the Winter
 - Greek Yogurt

Ganapati (2021): Wholesalers

Table 6: Supply Estimation Statistics

	1997	2002	2007
Full Model With Local Market Power	1.093	1.077	1.061
National-Level Market Power Only	1.150	1.151	1.155
Monopolistic Competition	1.163	1.171	1.180
Panel B: Markups (Price/Marginal Cost)			
	1997	2002	2007
Full Model With Local Market Power	1.268	1.297	1.326
National-Level Market Power Only	1.206	1.213	1.218
Monopolistic Competition	1.193	1.193	1.193
Panel C: Wholesaler Operating Profits (Rea	l 2007 Billon	USD)	
	1997	2002	2007
Full Model With Local Market Power	408	543	832
National-Level Market Power Only	325	396	569
Monopolistic Competition	307	353	496


Figure 3: Information Technology Share of Total Investment

- ightharpoonup Costs declining faster than prices ightharpoonup Markups Increase.
- ▶ Profits, Output, and Concentration all up.
- ▶ Firms trade higher Fixed Costs for lower marginal costs \rightarrow lower AC.
- ▶ Why? Huge change in IT driven economies of scale.

Miller, Osborne, Sheu, Sileo (2022): Cement

- ▶ Prices Up, Costs Down → Markups Increase.
- ▶ Profits, Output, and Concentration all up.
- ► Higher fixed costs and much lower marginal costs → lower AC.
- ► Why? Huge change in efficient scale due to new technology.

Collard-Wexler De Loecker (2015): Steel - Minimills

- ► Prices Down, Costs Down → TFP Up. Markups Decline.
- ► Much lower fixed costs
- ► Lots of entry and reallocation → Less Concentrated.
- ► New technology has opposite effect on scale(!)

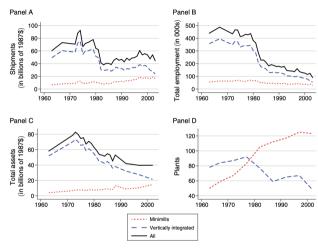


FIGURE 1. EVOLUTION OF THE STEEL INDUSTRY AND VERTICALLY INTEGRATED MILLS AND MINIMILLS

The public policy / political debate

Think tanks have really run with rising markups (for better or worse):

- ▶ "54% of inflation caused by corporate profits": EPI study using NIPA tables and accounting identity (Previous slide).
- ▶ Roosevelt (Konczal, Lusiani): Look at increases in $\frac{\text{Revenue}_{it}}{\text{COGS}_{it}}$ (no output elasticity) through 2021.
- ► Groundwork: CEO's brag about raising prices on earnings calls.

A common theme "firms are taking advantage of inflation to increase markups" \rightarrow not strong demand \rightarrow accommodative interest rate policy + price controls as solution.

Takeaways

- ▶ We find very little relationship between price changes (PPI) and markup changes over either the short run (2019-today) or the long-run (1980-2018).
 - Are changes in prices largely about changes in input costs?
 - Or have we mismeasured something (markups, matching firms to corresponding PPI, etc.)?
- ► Even with a strong correlation, we wouldn't be able to explain why markups $\mu = \frac{p}{mc}$ changed (ie: supply? or demand?)
- ► Single industry studies provide clear pictures, but paint very different pictures for different industries (particularly about markups, concentration, and scale).
- ▶ Nuance may not be favored in policy debates, but IO economists need to engage more.